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9.1 Introduction

A circular drawing of a graph (see Figure 9.1 for an example) is a visualization of a graph
with the following characteristics:

• The graph is partitioned into clusters;

• The nodes of each cluster are placed onto the circumference of an embedding

circle; and

• Each edge is drawn as a straight line.

There are many applications that would be strengthened by an accompanying circular
graph drawing. For example, the drawing techniques could be added to tools which ma-
nipulate telecommunication [Ker93], computer [Six00], and social networks [Kre96] to show
clustered views of those information structures. The partitioning of the graph into clus-
ters can show structural information such as biconnectivity, or the clusters can highlight
semantic qualities of the network such as sub-nets. Emphasizing natural group structures
within the topology of the network is vital to pinpoint strengths and weaknesses within that
design. It is essential that the number of edge crossings within each cluster remains low in
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Figure 9.1 A graph with arbitrary coordinates for the nodes and a circular drawing of
the same graph as produced by an implementation of Algorithm CIRCULAR. Figure taken
from [ST99, ST06].

order to reduce the visual complexity of the resulting drawings. Researchers have produced
several circular drawing techniques [Bra97, DMM97, KMG88, Kre96, TX95], some of which
have been integrated into commercial tools. However, the resulting drawings are visually
complex with respect to the number of crossings. In this chapter, we present circular draw-
ing techniques for simple biconnected and nonbiconnected graphs which are efficient and
also produce drawings with a low number of edge crossings. The first technique produces
single-circle drawings of biconnected graphs. The second technique produces single-circle
drawings of nonbiconnected graphs. Finally, the third technique produces multiple-circle
drawings of nonbiconnected graphs.

These techniques are very useful for many applications, however, with the exception of
the Graph Layout Toolkit (GLT) technique [DMM97, KMG88], these techniques do not
allow the user to define which nodes should be grouped together on an embedding circle.
And in the GLT technique, the layouts of the user-defined groups are themselves placed on
a single embedding circle. For some graph structures, this may not be ideal. In this chapter,
we also present a circular drawing algorithm that allows the user to define the node groups,
draws each group of nodes efficiently and effectively, and visualizes the superstructure well.
We call this approach user-grouped circular drawing.

An example of an application in which user-grouped circular drawing would be useful
is a computer network management system in which the user needs to know the current
state of the network. It would be very helpful to allow the user to group the computers
by department, floor, usage rates, or other criteria. See Figure 9.2. This graph drawing
could also represent a telecommunications network, social network, or even the elements of
a large software project. There are, of course, many other applications which would benefit
from user-grouped circular drawing: e.g., biological networks, financial market modeling,
HR management, and physical science models.

The remainder of this chapter is organized as follows: Section 9.1.1 discusses previous
work in this area. In Section 9.2, we present an O(m) time algorithm for the circular layout
of biconnected graphs. The algorithm guarantees that if a zero-crossing circular drawing
exists for a biconnected graph, then it will find it. In Section 9.2.1, we discuss properties
of circular drawings created by the technique in Section 9.2. In Section 9.3, we discuss an
approach for reducing the number of edge crossings in circular drawings. In Section 9.4, we
present an O(m) time algorithm for drawing nonbiconnected graphs on a single embedding
circle. In Section 9.5, we present an O(m) time algorithm for drawing nonbiconnected
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Figure 9.2 A user-grouped circular drawing. Figure taken from [ST03b].

graphs on multiple embedding circles. In Section 9.6, we introduce a framework for user-
grouped circular drawing. In Section 9.7, we discuss implementation details and give results
of experimental studies for these techniques. In Section 9.8, we present conclusions.

9.1.1 Other Circular Drawing Techniques

Kar, Madden, and Gilbert present a circular drawing technique and tool in [KMG88] for
network management. Recognizing that a clustered view of a network can be quite helpful
to its design and maintenance, the authors build a system that first partitions the network
into clusters, places the clusters onto the main embedding circle, and then sets the coordi-
nates of individual nodes. Finally, a heuristic approach is used to minimize the number of
crossings. As discussed in [DMM97], an advanced version of this O(n2) technique has been
implemented as part of Tom Sawyer Software’s successful Graph Layout Toolkit (GLT). An
early heuristic on circular drawings was presented in [Ma88].

Tollis and Xia introduced several linear time algorithms for the visualization of survivable
telecommunication networks in [TX95]. Given the ring covers of a network, these algorithms
create circular drawings such that the survivability of the network is clearly visible. Tech-
niques were presented for outside (inside) drawings such that the rings are placed outside
(inside) a root circle. An additional linear time algorithm produces drawings that are a
combination of outside and inside drawings. This type of flexibility in a tool allows each
network designer to choose the best technique given the exact application.

Citing a need for graph abstraction and reduction of today’s large information structures,
Brandenburg describes an approach to draw a path (or cycle) of cliques in [Bra97]. This
O(n3) algorithm creates a two-level abstraction of the given graph giving the ability to
project a clique on each node of the abstracted graph.

Circular drawing techniques are not limited to telecommunication and computer net-
work applications by any means. InFlow [Kre96] is a tool to visualize human networks
and produces diagrams and statistical summaries to pinpoint the strengths and weaknesses
within an organization. The usually unvisualized characteristics of self-organization, emer-
gent structures, knowledge exchange, and network dynamics can be seen in the drawings
of InFlow. Resource bottlenecks, unexpected work flows, and gaps within the organization
are clearly shown in these circular drawings.
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In [KW02], new ideas are presented that extend the framework for circular drawings de-
scribed in this chapter, in order to make the framework suitable for user interaction. They
introduce the concept of hicircular drawings, a hierarchical extension of the mentioned
framework replacing the circles of single vertices by circles of circular or star-like struc-
tures. Various heuristic algorithms that find an ordering of vertices that reduce the number
of crossings in the corresponding circular drawing are presented in [HS04]. A two-phase
heuristic for crossing reduction in circular layout is proposed in [BB05]. Their extensive
experimental results indicate that they yield few crossings. Three independent, complemen-
tary techniques for lowering the density and improving the readability of circular layouts
are presented in [GK07]. First, an algorithm places the nodes on the circle such that edge
lengths are reduced. Second, the circular drawing style is enhanced by allowing a set of
carefully selected edges to be routed around the exterior of the circle. The third technique
reduces density by coupling groups of edges as bundled splines that share part of their route.

Due to lack of space, we can not describe other techniques here, but refer the reader to
other works such as [BB05, GK07, HS04, KW02, Ma88].

For more information on the algorithms presented in this chapter, see [ST06, ST03b].

9.1.2 Complexity of the Circular Graph Drawing Problem

Intuitively, the problem of creating circular graph drawings while minimizing the number
of edge crossings seems very hard. The general problem of placing nodes such that the
number of edge crossings is minimum is the well-known NP-hard crossing number problem.
Furthermore, the more restricted problem of finding a minimum crossing embedding such
that all the nodes are placed onto the circumference of a circle and all edges are repre-
sented with straight lines is also NP-hard as proven in [MKNF87]. The authors show the
NP-hardness by giving a polynomial time transformation from the NP-complete Modified

Optimal Linear Arrangement problem.

9.2 Circular Drawings of Biconnected Graphs

In order to produce circular drawings with few crossings, the algorithm tends to place edges
toward the outside of the embedding circle. This characteristic is a result of placing a few
edges in the middle of the drawing to be crossed. Also, nodes are placed near their neighbors.
In fact, this algorithm tries to maximize the number of edges appearing toward the periphery
of the embedding circle. The algorithm achieves this improvement by selectively removing
some edges and then building a depth first search (DFS) based node ordering of the resulting
graph. However, the edge placement near the periphery may decrease the readability of the
drawing. If this is an issue, an increase of scale will be helpful. An alternative approach
where selected edges are drawn outside the embedding circle is described in [GK07].

In order to selectively remove some edges, this technique visits the nodes in a wave-like
fashion. Define a wave front node to be adjacent to the last node processed; see Figure 9.3.
A wave center node is adjacent to some other node that has already been processed. The
algorithm starts at a lowest degree node and continues to visit wave front and wave center
nodes if they are of lowest degree. If none of the current wave front or wave center nodes
are of lowest degree, then some lowest degree node is chosen. The wave-like node traversal
begins again from this newly chosen node and will continue from this node and the previous
wave front and wave center nodes.

A pair edge is incident to two nodes which share at least one neighbor; see Figure 9.4.
Nodes v and w are said to be paired by u, and u is said to establish the pair edge (v, w).
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Figure 9.3 Examples of wave front and wave center nodes. The shaded region includes
those nodes that have already been processed. The node labeled 2 is the most recently
processed. Figure taken from [ST06].

In other words, u, v, and w form a triangle. Pair edges will be removed before the DFS
step of the technique. A triangulation edge is a new pair edge that is inserted into the
graph by the technique. The triangulation edges are also removed from the graph before
the DFS portion of the algorithm. Each time a node u is visited, a list of pair edges is built.
If there is an insufficient number of pair edges in the graph, the algorithm automatically
inserts triangulation edges into the graph. With the ensuing removal of u, that node is
inherently represented by the newly found pair edges; see Figure 9.5. The illustrations
marked (a) show a degree two node u and its neighbors v and w at three different points in
the algorithm. The pair edge established by u, (v, w), is shown with a bold line in the first
illustration. The illustration immediately to the right shows the same graph fragment when
the next node is processed. Although node u and edges (u, v) and (u,w) are not in the
graph anymore, they are inherently represented by the edge (v, w). The next illustration
to the right shows the same graph fragment after the pair edge (v, w) has been removed.
At this point, the pair edge (v, w) is inherently represented by node u and edges (u, v) and
(u,w). A similar example is shown in the illustrations labeled (b), where the current node
being processed has degree three. It is this selective absorption that causes the behavior of
edge placement toward the periphery of the embedding circle.

a pair edge

u

v w

Figure 9.4 Example of a pair edge. Figure taken from [ST99, ST06].

It is important to note that we do not find all pair edges. For each node u, we visit its
neighbors v1, v2, . . . , vk in some order, say, the order in which they appear in the adjacency
list. For example, we check to see whether (v1, v2) exists: if so, we add that edge to the
removal list. If not, we add the triangulation edge (v1, v2) to the graph and to the removal
list. This part of the algorithm takes O(deg(u)) time. Notice that a new edge is added only
between two nodes that are consecutive in the adjacency list of the current node (and, of
course, if such an edge does not already exist). Also note that the first and last neighbors
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Figure 9.5 The node and edge absorption qualities of Algorithm CIRCULAR. Part (a)
shows a degree-two node u and its neighbors v and w at three different points in the algo-
rithm. First, the pair edge established by u, (v, w), is shown. Next, after node u is processed,
node u and edges (u, v) and (u,w) are inherently represented by the edge (v, w). Finally, we
see the same graph fragment after the pair edge (v, w) has been removed in Step 14. Part (b)
shows a similar example with a degree-three node. Figure taken from [ST99, ST06].

visited cannot experience an increase in degree. For each of those nodes, the edge incident
to u is removed while at most one triangulation edge is added. Next, we show that the total
number of triangulation edges added is O(m).

The number of triangulation edges added to G over the course of the algorithm is at most∑n−3
i=1 minDegi − 1, where minDegi is the minimum degree found in G at the ith iteration

of the While loop. minDegi ≤ avgDeg before the ith iteration, ∀i ≥ 1 and where avgDeg

is the average degree of the nodes in the original graph G. It is important to note that the
visit of the neighbors starts from the lowest degree neighbor and proceeds cyclically around
the adjacency list. Since we know that minDegi ≤ avgDeg before the ith iteration, ∀i ≥ 1,
we also know that

n−3∑

i=1

minDegi − 1 <

n∑

i=1

minDegi ≤

n∑

i=1

avgDeg = 2m.

Therefore, the number of triangulation edges added is O(m).

Subsequent to the edge removal, the algorithm proceeds to build an ordering of the nodes
for the reduced graph. A traditional DFS is performed and then the nodes in a longest
path of the DFS tree are placed around the embedding circle. Alternatively, a heuristic
algorithm for finding a longest path in a graph can be used. Finally, the remaining nodes
are nicely merged into the ordering. This can be accomplished by visiting each neighbor of
u and asking if it is next to another neighbor of u on the embedding circle. If two neighbors
of u are next to each other on the embedding circle, then we place u between those two
neighbors. (If there are multiple pairs of such neighbors, we arbitrarily pick one of those
pairs.) If there are no two neighbors of u next to each other on the embedding circle, then
we place u next to some neighbor or u or, if there are no neighbors of u on the embedding
circle yet, we pick an arbitrary position for u.
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Algorithm CIRCULAR

Input: A biconnected graph, G = (V,E).
Output: A circular drawing Γ of G such that each node in V lies on the periphery of a
single embedding circle.

1. Bucket sort the nodes by ascending degree into a table T .

2. Set counter to 1.

3. While counter ≤ n− 3

4. If a wave front node u has lowest degree, then currentNode = u.

5. Else If a wave center node v has lowest degree, then
currentNode = v.

6. Else set currentNode to be some node with lowest degree.

7. Visit the adjacent nodes consecutively. For each two nodes,

8. If a pair edge exists place the edge into removalList.

9. Else place a triangulation edge between the current pair of
neighbors and also into removalList.

10. Update the location of currentNode’s neighbors in T .

11. Remove currentNode and incident edges from G.

12. Increment counter by 1.

13. Restore G to its original topology.

14. Remove the edges in removalList from G.

15. Perform a DFS (or a longest path heuristic) on G.

16. Place the resulting longest path onto the embedding circle.

17. If there are any nodes that have not been placed, then place the remaining nodes
into the embedding order with the following priority:

(i) between two neighbors, (ii) next to one neighbor, (iii) next to
zero neighbors.

Figure 9.6 Algorithm CIRCULAR.

Figure 9.6 shows the pseudocode for Algorithm CIRCULAR. The time complexity of
Algorithm CIRCULAR is O(m), where m is the number of edges in G. Step 1 takes O(m)
time. Step 3 takes O(m) time over all iterations since the use of efficient data structures
(as explained in Section 6.2) allows each iteration to take only O(deg(vi)) time, where vi is
the vertex chosen during the ith iteration. Notice that the number of triangulation edges
added by Step 9 is O(m), as shown above. Clearly, Steps 13–16 require O(m) time. Finally,
Step 17 also requires O(m) time since at most

∑n

i=1 deg(vi) = O(m) possible placements
are reviewed.

9.2.1 Properties of Algorithm CIRCULAR

In this section, we give properties of Algorithm CIRCULAR. See [ST06, ST03b] for the
detailed proofs. A biconnected graph, G, is outerplanar if and only if G can be drawn on
the plane such that all nodes lie on the boundary of a single face and no two edges cross. If
the biconnected graph given to Algorithm CIRCULAR is outerplanar, then the result will
be a circular visualization such that no two edges cross. In fact, the technique has been
inspired by the algorithm for recognizing outerplanar graphs presented in [Mit79].

By the definition of outerplanar graphs, we know that there exists a plane circular draw-
ing for any outerplanar graph. Also, by that same definition, we know that a graph that



292 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

is not outerplanar does not admit a plane circular drawing. In fact, the set of biconnected
graphs that may be drawn in a circular fashion without any crossings is exactly the set
of biconnected outerplanar graphs. The requirement of placing all nodes on the periphery
of some embedding circle is equivalent to placing all nodes on a single face (say, the ex-
ternal face) of some embedding. Furthermore, if a zero-crossing visualization exists for a
biconnected graph, G, then that drawing can be found by Algorithm CIRCULAR.

Therefore, we have the following theorem:

Theorem 9.1 Given a biconnected graph G, if G admits a circular layout with zero

crossings, then Algorithm CIRCULAR produces a circular drawing with zero crossings in

O(n) time.

Also, as shown in the discussion of the time requirements for Algorithm CIRCULAR, we
have:

Theorem 9.2 Algorithm CIRCULAR produces a circular drawing of any biconnected

graph in O(m) time.

9.3 Further Reduction of Edge Crossings

As will be shown in the experimental results of Section 7.1, Algorithm CIRCULAR produces
drawings with a low number of edge crossings and works very well in practice. We can
further reduce the number of edge crossings with the technique presented in this section.
As discussed in Section 9.1.2, the problem of minimizing the number of edge crossings in
a circular graph drawing is NP-hard. The configuration of the nodes as determined by
Algorithm CIRCULAR produces drawings with a low number of crossings, which can then
be further reduced to some local minima with a monotonic crossing reduction technique.
The postprocessing step visits each node v and queries whether crossings can be reduced
further by moving v next to one of its neighbors.

See Figure 9.7 for Algorithm CIRCULAR-Postprocessing. The time complexity of Algo-
rithm CIRCULAR-Postprocessing is O(m2). This order is dominated by the required time
for counting the number of crossings (Steps 1 and 9). It is vitally important to the time
efficiency of Algorithm CIRCULAR-Postprocessing that the number of crossings be counted
in an efficient fashion. As will be shown in Lemma 9.1, Step 1 of Algorithm CIRCULAR-
Postprocessing requires O(m + χ) time to find the total number of crossings, where m is
the number of edges and χ is the number of crossings. The experimental study presented
in Section 9.7 has shown that the loop of Step 2 needs to be iterated at most 9 times. In
fact, the vast majority of drawings converged within the first two iterations. In the worst
case, Step 2 requires a constant amount of time. Steps 3 and 6 require O(n) time. Steps 4
and 5 require O(m) time since we explore

∑n

i=1 degree(i) = O(m) positions. Steps 7 and 8
require O(m) time since we know there will be at most

∑n

i=1 degree(i) = O(m) positions.
In section 12.3.2, we will show that it takes O(m) time to find the new number of crossings
in Step 9. And since over the course of the algorithm, Step 9 is repeated O(m) times Step 9
requires O(m2) time. Steps 10 and 11 require O(m) time. So the time complexity of the
entire algorithm is O(m2 + χ). Since, each edge can cross any other edge in the drawing at
most once in a circular visualization, χ is O(Σm

i=1i), which is O(m2). Therefore, Algorithm
CIRCULAR-Postprocessing has time complexity O(m2).
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Algorithm CIRCULAR-Postprocessing

Input: A drawing Γ of biconnected graph G = (V,E) produced by Algorithm CIRCULAR.
Output: A drawing Γ′ of G with fewer or equal number of crossings.

1. currentCrossings = current number of crossings in the drawing.

2. For a fixed number of times

3. For each node, u, in G

4. Initialize List1 to contain the embedding circle positions
which lie between two nodes adjacent to u.

5. If List1 is empty

(a) Initialize List2 to contain the embedding circle
positions which lie next to one neighbor
of u.

(b) PositionList = List2.

6. Else PositionList = List1.

7. For each location in PositionList

8. Place u at this location

9. newCrossings = the new number of crossings.

10. If newCrossings < currentCrossings then
currentCrossings = newCrossings.

11. Else Place u back into its previous position.

12. If no improvement was made during this iteration, stop.

Figure 9.7 Algorithm CIRCULAR-Postprocessing.

9.3.1 Counting All the Crossings in a Circular Drawing

Consider the straight edges ei and ej of Figure 9.8. The edge ei can cross ej if and only if
one endpoint v of ej appears between the two endpoints u and w of ei. In this case, ej is
called an open edge with respect to the arc uvw. If both endpoints of ej appear between u

and w on the perimeter of the embedding circle, then ei and ej do not cross. So, if we order
the edges as they are encountered around the embedding circle and visit their endpoints in
that order, we can determine the total number of edge crossings by counting the number of
open edges. Although the problem is one dimensional, this technique has some similarities
to the line segment intersection algorithm presented in [PS85].

u

v

w

e

e

i

j

Figure 9.8 An open edge with respect to the arc uvw. Figure taken from [ST99, ST06].
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Algorithm CountAllCrossings

Input: A single circle drawing Γ of a biconnected graph G = (V,E).
Output: The number of edge crossings in Γ.

1. Order the edges as they are encountered around the circle in a clockwise order.

2. numberOfCrossings = 0.

3. For each edge endpoint, pi, of edge ei, do

4. If pi is the first endpoint of edge ei append ei to openEdgeList.

5. Else

(a) Increase numberOfCrossings by the number of open
edges with respect to the arc pgphpi, where pg and pi
are the endpoints of ei and ph is some endpoint which
was visited after pg and before pi.

(b) Remove ei from openEdgeList.

Figure 9.9 Algorithm CountAllCrossings.

Algorithm CountAllCrossings requires O(m + χ) time. Step 1 takes O(m) time. This
step can be accomplished in O(m) time by visiting the incident edges of each node as they
appear around the embedding circle. Steps 3, 4, and 5(b) require O(m) time. Step 5(a)
requires time

2m∑

i=1

χi = O(χ),

where χi is the number of edge crossings caused by the edge ei and χ is the total number
of edge crossings in the embedding. We accomplish this time requirement by traversing
openEdgeList backward from the end of the list to the element which contains ei. Therefore,
we have the following:

LEMMA 9.1 Algorithm CountAllCrossings counts the total number of edge crossings in
a single circle embedding, where m is the number of edges and χ is the number of crossings
in O(m+ χ) time.

9.3.2 Determining the New Number of Crossings after Moving a Node

Since we can determine the overall number of crossings at the beginning of the algorithm
and then move one node at a time, it is necessary to count only the number of crossings
caused by the incident edges of the current node, v, to update the number of crossings in
the drawing. During each iteration of the crossing reduction, the number of crossings in the
entire drawing is equal to the following formula:

New Number of Crossings = Old Number of Crossings− χv + χ′

v

where, χv = Number of crossings caused by v in the old location,
and χ′

v = Number of crossings caused by v in the new location.

Because we already know the old number of crossings, finding the new number of crossings
is dominated by the time to find χv and χ′

v. Any change in the edge crossings will occur
between edges incident to v and edges that have exactly one endpoint in the arc between the
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old and new positions of v. These pertinent edges are visited in order from the old toward
the new position of v. A counter, ctr, holds the number of open edges in the arc (not
including the open edges incident to v). Each time that an endpoint of an edge incident to
v is encountered, the number of crossings is increased by the value in ctr. At the conclusion
of this process, the number of crossings caused by v in the old position is known. The
number of crossings caused by v in its new position is found by repeating this process from
the new towards the old position of v after moving v to its new position; see Figure 9.10.

of v
old position

new position

of v

(a) (b)

v

u

1 2
3

4

5
6

7

w u

1 2
3

4

5
6

7

w

v

Figure 9.10 The arc created by moving node v to the position denoted with the arrow.
The pertinent edges of the arc are shown. Figure taken from [ST06].

Therefore, we have the following result:

LEMMA 9.2 An O(m) time algorithm exists to count the number of edge crossings
gained or lost by moving a node v within a single circle embedding.

The pseudocode for Algorithm CountSingleNodeCrossings is shown in Figure 9.11. This
algorithm requires O(m) time. Steps 3, 4, 5, 6, 7, and 8 require O(m) time since the number
of pertinent edges is O(m) as described above. Step 13 requires O(m) time. Finally, Step 14
requires O(m) time since it is a repetition of Steps 5–8.

If Algorithm CountSingleNodeCrossings is swapping the placement of two nodes which
are next to each other, u and v, on the embedding circle, then Algorithm CountSingleN-
odeCrossings only takes O(maxDegree) time, where maxDegree is the maximum degree
of all nodes in V . This is because the number of pertinent edges is the smaller degree of u
and v, see Figure 9.12. Since a swap of these two nodes can be accomplished by moving u

between v and β or moving v between α and u, we choose the move such that the number
of pertinent edges (i.e., the degree of the node which is not moved) is smaller. Both of the
moves produce the same node ordering, so we perform the move which requires less time.
In the specific case of Figure 9.12, we choose to move node u.

Given Lemma 9.1, and Lemma 9.2, Algorithm CIRCULAR-Postprocessing produces a
visualization with a reduced number of edge crossings in O(m2) time.
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Algorithm CountSingleNodeCrossings

Input: A single circle drawing of a graph G = (V,E),
a node v ∈ V , and
a new position α for v.

Output: The change in the number of edge crossings caused by moving v to α.

1. ctr = 0.

2. numberOfCrossings = 0.

3. Order the pertinent edge endpoints as they are encountered around the embedding
circle.

4. Mark the pertinent edges as not seen.

5. For each pertinent edge endpoint pi of edge ei do

6. If ei is incident to v increment the numberOfCrossings by ctr.

7. Else If ei has been seen decrement ctr by 1.

8. Else increment ctr by 1 and mark ei as seen.

9. OldNumberSingleNodeCrossings = numberOfCrossings.

10. ctr = 0.

11. numberOfCrossings = 0.

12. Move v to its new position, α.

13. Mark the pertinent edges as not seen.

14. Repeat Steps 5–8 in the opposite direction.

15. NewNumberSingleNodeCrossings = numberOfCrossings.

16. changeInCrossings = NewNumberSingleNodeCrossings−

OldNumberSingleNodeCrossings.

Figure 9.11 Algorithm CountSingleNodeCrossings.

α

β

u

v

Figure 9.12 The pertinent edges for Algorithm CountSingleNodeCrossings if the two
adjacent nodes u and v are being swapped. Figure taken from [ST99, ST06].

9.4 Nonbiconnected Graphs on a Single Circle

Most networks are not biconnected. Therefore, it is important for a circular drawing tool
to provide a component that visualizes nonbiconnected graphs. An algorithm for produc-
ing circular drawings of nonbiconnected graphs on a single embedding circle is presented
in [Six00, ST06]. Given G, a nonbiconnected graph, it can be decomposed into its bicon-
nected components. The algorithm layouts the resulting block-cutpoint tree on a circle and
then it layouts each biconnected component with a variant of Algorithm CIRCULAR.

First, we consider how to obtain a circular drawing of a tree. A DFS produces a numbering
that we can use to order the nodes around the embedding circle in a crossing-free manner.
From this result, we know how to order the biconnected components around the embedding
circle. Next, we need to consider articulation points which are not adjacent to a bridge (strict
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articulation points). Strict articulation points appear in multiple biconnected components.
In which biconnected component should a strict articulation point appear in the circular
drawing? Multiple approaches to this issue are discussed in [Six00, ST99]. Due to space
restrictions, we do not discuss these solutions here. A third issue to consider is how to
transform the layout of each biconnected component to fit onto an arc of the embedding
circle. This transformation is called breaking. The resulting breaks occur at an articulation
point within the biconnected component.

The worst-case time requirement for the above algorithm is O(m) if we use Algorithm
CIRCULAR to layout each biconnected component. The resulting drawings have the prop-
erty that the nodes of each biconnected component (with the exception of some strict
articulation points) appear consecutively. Furthermore, the order of the biconnected com-
ponents on the embedding circle are placed according to a layout of the accompanying
block-cutpoint tree. Therefore, the biconnectivity structure of a graph is displayed even
though all of the nodes appear on a single circle. An example drawing is shown in Figure
9.13. More details on this algorithm can be found in [Six00, ST06].

Figure 9.13 An example drawing produced by Algorithm CIRCULAR-Nonbiconnected.

9.5 Nonbiconnected Graphs on Multiple Circles

In this section, we will present a technique for producing circular drawings of graphs
on multiple embedding circles. Given a nonbiconnected graph G we can decompose the
structure into biconnected components in O(m) time. Taking advantage of this inherent
structure, we first layout the block-cutpoint tree using a radial layout technique similar to
[Ber81, Ead92, Esp88], then we layout each biconnected component of the graph with a
variant of Algorithm CIRCULAR. See Figure 9.14.

The algorithm addresses several issues in order to produce good quality circular drawings:
1) which biconnected component is considered to be the root of the block-cutpoint tree, 2)
articulation points can appear in multiple biconnected components of the block-cutpoint
tree and need to be assigned to a unique biconnected component, 3) the nodes of the block-
cutpoint tree can represent biconnected components of differing size, and 4) the nodes of
each biconnected component should be visualized such that the articulation points appear
in good positions and also there is a low number of edge crossings. We will address each of
these issues in turn.
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In order to address the first issue, we can choose the root with a recursive leaf-pruning
algorithm to find the “center” of the tree [DETT99]. Alternatively, we can pick the root
dependent on some important metric: e.g., size of the biconnected component. Next we
address the second issue. Strict articulation points (i.e., articulation points that are not
adjacent to a bridge) are duplicated in more than one biconnected component of the block-
cutpoint tree, but of course each node should appear only once in a drawing of that graph.
Therefore, we offer three approaches in which each articulation point will appear only once in
the drawing. The first approach assigns each strict articulation point, u, to the biconnected
component which contains u and is also closest to the root in the block-cutpoint tree. This
biconnected component is the parent of the other biconnected components which contain u.
See Figure 9.15(a). The second approach assigns the articulation point to the biconnected
component which contains the most neighbors of that articulation point, see Figure 9.15(b).
The third approach assigns the articulation point to a position between its biconnected
components, see Figure 9.15(c). Placing a node in this manner will highlight the fact that
this node is an important articulation point. Following the assignment step, the duplicates
of a strict articulation point are removed from the blocks in the block-cutpoint tree. We refer
to the nodes adjacent to a removed strict articulation point in a biconnected component
as inter-block nodes. In order to maintain biconnectivity for the method which will layout
this component, a thread of edges is run through the inter-block nodes. These edges will
be removed from the graph after the layout of the cluster is determined.

The third issue to be addressed while performing the layout of the block-cutpoint tree
is that the biconnected components may be of differing sizes. The node sizes are propor-
tional to the number of nodes contained in the current block. The radial layout algorithms
presented in [Ber81, Ead92, Esp88] place the root at (0, 0) and the subtrees on concen-
tric circles around the origin. These algorithms require linear time and produce plane
drawings. However, unlike the block-cutpoint trees, the nodes of the trees laid out with
[Ber81, Ead92, Esp88] are all the same size. The technique in [YFDH01] handles graphs
with different node sizes; however, node overlap is allowed. In order to produce radial
drawings of trees with differing node sizes, we present a modification of the classical radial
layout technique [Ber81, Ead92, Esp88]:

B1

B2 B3 B4

B5 B
6

B7 B
8

B1

B4

B2 B3

B7
B

8

B
6

B5

Figure 9.14 The illustration on the left shows the block-cutpoint tree of a nonbiconnected
graph. The small black tree nodes represent articulation points and the small white tree
nodes represent bridges. The right illustration is a drawing of the same graph where the
block-cutpoint tree is laid out with a radial tree layout technique. Figure taken from [ST06].
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(a) (b) (c)

Figure 9.15 Examples of three approaches for the assignment of strict articulation points
to biconnected components. The black nodes are strict articulation points. Figure taken
from [ST06].

RADIAL – with Different Node Sizes: For each node, we must assign a ρ coordinate,
which is the distance from point (0, 0) to the placement of that node and a θ coordinate
which is the angle between the line from (0, 0) to (∞, 0) and the line from (0, 0) to the
placement of that node. The ρ coordinate of node v, ρ(v), is defined to be

ρ(u) + δ +
du

2
+

max(d1, d2, . . . , dk)

2
,

where ρ(u) is the ρ coordinate of the parent u of v, δ is the minimum distance allowed
between two nodes, du is the diameter of u, and max(d1, d2, ..., dk) is the maximum of the
diameters of all the children of u. It is important to note that while all descendants of
a node i are placed on the same concentric circle, not all nodes in the same level of the
block-cutpoint tree are placed on the same concentric circle.

In order to prevent edge crossings, each subtree must be placed inside an annulus wedge,
and the width of each wedge must be restricted such that it does not overlap a wedge of any
other subtree. The θ coordinate of node v depends on the widths of the descendants of v,
not just the number of leaves as in [Ber81, Ead92, Esp88]. This assignment of coordinates
leads to a layout of the form shown in Figure 9.16.

Figure 9.16 A radial layout of a tree with differing size nodes. Figure taken from [ST06].

The fourth issue to be addressed by the circular drawing technique is the visualization of
each component. After performing RADIAL – with Different Node Sizes, we have a layout
of the block-cutpoint tree and need to visualize the nodes and edges of each biconnected
component. The radial layout of the block-cutpoint tree should be considered while drawing
each biconnected component. See Figure 9.17. Define ancestor nodes to be adjacent to nodes
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in the parent biconnected component in the block-cutpoint tree. Likewise, define descendant
nodes to be adjacent to nodes in child biconnected components. In order to reduce the
number of crossings caused by inter-biconnected component edges, the technique tries to
place ancestor nodes in the arc between the points α and β. The size of the arc from α to
β is dependent on the distance between the placement of a biconnected component to the
placement of its parent in the radial layout of the block-cutpoint tree. Descendant nodes
are placed uniformly in the bottom half of the biconnected component layout. For example,
if there are three descendant nodes, they would be placed at points γ, δ, and ǫ, as shown
in Figure 9.17. These special positions for the ancestor and descendant nodes are called
ideal positions. Because of a high number of ancestor and descendant nodes, it may not
be possible to place all ancestor and descendant nodes in an ideal position; however, the
algorithm places as many as possible in ideal positions.

α β

γ
δ ε

Figure 9.17 The relation between the layout of the block-cutpoint tree and the layout of
an individual biconnected component. Figure taken from [ST06].

Placing the ancestor and descendant nodes in this manner reduces the number of crossings
caused by inter-biconnected component edges going through a biconnected component. In
fact, the only times that these edges do cause crossings are when the number of ancestor
(descendant) nodes in the biconnected component Bi is more than about ni

2 , where ni is the
number of nodes in Bi. In those cases, the set of ideal positions includes all the positions in
the upper (respectively lower) half of the embedding circle and also positions in the lower
(upper) half which are as close as possible to the upper (lower) half.

We present two algorithms for the layout of each biconnected component such that an-
cestor and descendant nodes are placed near their ideal positions. The first step of each
technique is to perform Algorithm CIRCULAR on the current biconnected component, Bi.
This requires O(mi) time, where mi is the number of edges in biconnected component Bi.
Next, this drawing is updated so that the ancestor and descendant nodes appear near their
ideal positions.

The first technique rotates the layout of the biconnected component as found by Al-
gorithm CIRCULAR such that many ancestor and descendant nodes are placed close to
their ideal positions. Then, the remaining ancestor and descendant nodes are moved to
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their closest ideal position. See Figure 9.18 for Algorithm LayoutCluster1. This algorithm
requires O(mi) time. See Figure 9.19(b) for an example.

Algorithm LayoutCluster1

Input: A biconnected component, Bi.
Output: An circular layout of Bi such that the positions of the articulation points are
placed well with respect to the ideal positions.

1. Perform Algorithm CIRCULAR on Bi and save the results in Γ1.

2. If the number of ancestor nodes in Bi is less than the number of descendant nodes,
set the block type to be descendant, otherwise, set the block type to be ancestor.

3. Loop through the nodes of Bi as they appear around the embedding circle in Γ1

and for each node which is the same type as the block type, record the clockwise
distance to the last node of that type.

4. Find the nodes that have the smallest value of the distances recorded in Step 3
and determine the median node, u, of this set.

5. If the block type is descendant, rotate the layout of Bi found in Step 1 such that
u is in the middle of the lower half of the embedding circle.

6. Else rotate the layout of Bi found in Step 1 such that u is in the middle of the
upper half of the embedding circle.

7. Place the remaining ancestor and descendant nodes in their closest ideal position.

Figure 9.18 Algorithm LayoutCluster1.

The second technique LayoutCluster2 has a higher time complexity but may lead to
layouts with fewer edge crossings. The first seven steps are the same as that of Algorithm
LayoutCluster1. During the placement of ancestor and descendant nodes that are not in
ideal positions, each such node v is placed in an ideal position, and if the number of edge
crossings added exceeds a threshold T1 or the movement of v exceeds a threshold T2, then the
size of the embedding circle is increased such that node v can be placed in an ideal position
without changing the relative order between v and its neighbors on the embedding circle.
See Figure 9.19(c) for an example. The thresholds are determined on a per application basis.
If increasing component edge crossings or node movement is undesirable for an application,
the thresholds are adjusted accordingly. The time required for Algorithm LayoutCluster2 is
O(mi) if threshold T2 (based on node movement) is used or O(mi∗k), where k is the number
of ancestor and descendant nodes in the cluster, if threshold T1 (based on the number of
crossings) is used.

Another technique for drawing a biconnected component would rotate the embedding
circle through many positions to find a good solution.

Now that we have addressed the subproblems, we present a comprehensive technique
for obtaining circular layouts of nonbiconnected graphs, called Algorithm CIRCULAR-
with Radial, see Figure 9.20 for the pseudocode of the algorithm. The time complexity
of Algorithm CIRCULAR-with Radial is O(m) if the biconnected components are laid out
with Algorithm LayoutCluster1 or O(m ∗ k), where k is the total number of ancestor and
descendant nodes in the graph if Algorithm LayoutCluster2 is used. Figure 9.21 shows an
example produced by this algorithm.
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Figure 9.19 This figure demonstrates Algorithms LayoutCluster1 and LayoutCluster2.
The black nodes are descendant nodes and the white nodes are ancestor nodes. (a) Draw-
ing produced by Algorithm CIRCULAR; (b) the rotated drawing of part (a) produced by
Algorithm LayoutCluster1; (c) the resulting drawing of part (a) produced by Algorithm
LayoutCluster2. Figure taken from [ST06].

Algorithm CIRCULAR-with Radial

Input: Any graph G.
Output: A circular drawing Γ of G.

1. Decompose G into a block-cutpoint tree T .

2. If G has only one biconnected component, perform Algorithm CIRCULAR on G.

3. Else

4. Assign the strict articulation points to a biconnected component.

5. Layout the root cluster of T with Algorithm CIRCULAR.

6. For each subtree S of the root cluster

7. Perform the ρ coordinate assignment phase of RADIAL –

with Different Node Sizes on S.

8. For each biconnected component, Bi, of S

9. Layout Bi with Algorithm LayoutCluster1,
or LayoutCluster2 taking into account
the radii defined for the superstructure tree
in Step 7.

10. Considering the order of the subtrees defined during the
layout of biconnected components in Step 9,
perform the θ coordinate assignment phase of
RADIAL – with Different Node Sizes on S.

11. Translate and rotate the clusters of S according to the
radial layout of S.

Figure 9.20 Algorithm CIRCULAR-with Radial.

An extension of Algorithm CIRCULAR-with Radial to include interactive schemes has
been presented by Kaufmann and Wiese in [KW02].
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Figure 9.21 A sample drawing as produced by Algorithm CIRCULAR-with Radial. Fig-
ure taken from [ST06].

9.6 A Framework for User-Grouped Circular Drawing

The problem of producing circular drawings of graphs grouped by biconnectivity is quite
different from the problem of drawing a graph whose grouping is user-defined. In the latter
case, there is no known structure of either the groups or the relationship between the groups.
Therefore, we must use a general method for producing this type of visualization. The four
goals of a user-grouped circular drawing technique should be:

1. the user-defined groupings are highly visible,

2. each group is laid out with a low number of edge crossings,

3. the number of crossings between intra-group and inter-group edges is low, and

4. the layout technique is fast.

We know from previous work in clustered graph drawing [EFL97, EF97, EFN99, HE98]
that the relationship between groups is often not very complex. We take advantage of this
knowledge in this framework. Define the superstructure Gs of a given graph G = (V,E, P ),
where P is the node group partition, as follows: the nodes in Gs represent the elements
of P . For each edge e ∈ E which is incident to nodes in two different node groups, place
an edge between nodes representing the respective groups in Gs. The type of structure
that we expect Gs to have should be visualized well with a force-directed [DETT99, Ead84]
technique; therefore, the superstructure Gs will be drawn with this approach. Additionally,
since Gs will likely not be a very complicated graph, it should not take much time to achieve
a good drawing with a force-directed technique.

The node groups themselves will be either biconnected or not. Since Algorithms CIRCU-
LAR and CIRCULAR-Nonbiconnected can layout biconnected and nonbiconnected graphs
on a single embedding circle in linear time and have been shown to perform well in practice,
we also will use those techniques here.

We have now addressed how to achieve Goals 1 and 2 with good speed. However, in order
to produce good user-grouped circular graph drawings, we must successfully merge these
two techniques so that we can simultaneously reach Goals 1,2, and 3. And, of course, we
need a fast technique in order to achieve Goal 4. Attaining Goal 3 is very important to
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the quality of drawings produced by a user-grouped circular drawing technique. As shown
in [Pur97], a drawing with fewer crossings is more readable. It is especially important to
reduce the number of intra-group and inter-group edge crossings as those can particularly
cause confusion while interpreting a drawing. See Figure 9.22. How can we achieve this
low number of crossings? We must place nodes that are adjacent to nodes in other groups
(called outnodes in [DMM97, KMG88]) close to the placement of those other nodes. A
force-directed approach is a good way to attain this goal since it would encourage outnodes
to be closer to their neighbors. Traditional force-directed approaches [DETT99, Ead84]
will not work here though, because we need to constrain the placement of nodes to circles.
In Section 9.6.1, we present a force-directed approach in which the nodes are restricted to
appear on circular tracks. With the use of this technique we will reach Goal 3. As will be
discussed, we can do this in a reasonable amount of time.
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Figure 9.22 Example of intra-group and inter-group edge crossings. Figure taken from
[ST03b].

As with most force-directed techniques, the initial placement of nodes has a very signif-
icant impact on the final drawing [DETT99, Ead84]. Therefore, it is important to have
a good initial placement. This is why we should layout the superstructure and each node
group first. At the completion of those steps, we should have the almost-final drawing.
It will then be a matter of fine-tuning the drawing with the circular-track force-directed
technique. And as shown in [ST01] (see extended version in [ST03a]), once you have an
almost-final drawing, it does not take much time for a force-directed technique to converge.

9.6.1 Circular-Track Force-Directed

In order to adapt the force-directed paradigm for circular drawing, we need a way to guar-
antee that the nodes of a group appear on the circumference of an embedding circle, the
circular track. The nodes are restricted to appear on the circular track, but are allowed to
jump over each other and appear in any order, see Figure 9.23. And as in the force-directed
approach, we want to minimize the potential energy in the spring system which is modelling
the graph. In this section, we describe how this circular-track adaptation is achieved.

First, we need to look at node coordinates in a different way. Node i belongs to group α

and is located at position (xi, yi). Given that the center of the embedding circle on which
α is located is at (xα, yα) and the radius of that circle is rα, we can restate the coordinates
of i in the following way:

xi = xα + rα ∗ cos(θi) (9.1)

yi = yα + rα ∗ sin(θi) (9.2)
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Figure 9.23 Circular-track force-directed technique. Figure taken from [ST03b].

Remember that Hooke’s Law [HR88] gives us the following equation for the potential
energy V in a spring system:

V =
∑

ij

kij [(xi − xj)
2 + (yi − yj)

2] (9.3)

where kij is the spring constant for the spring between nodes i and j. Equation (12.3) can
be rewritten using (12.1) and (12.2):

V =
∑

(i,j)∈E kij [((xα + rα ∗ cos(θi))− (xβ + rβ ∗ cos(θj)))
2
+

((yα + rα ∗ sin(θi))− (yβ + rβ ∗ sin(θj)))
2
] (9.4)

where node j belongs to group β, (xβ , yβ) is the center and rβ is the radius of the embedding
circle on which β appears. Thus, we have:

V =
∑

(i,j)∈E kij [(xα + rα ∗ cos(θi)− xβ − rβ ∗ cos(θj))
2 +

(yα + rα ∗ sin(θi)− yβ − rβ ∗ sin(θj))
2] (9.5)

We can find a minimal energy solution on variables x, y, and θ. It is interesting to note
that if i and j are on the same circle, then xα and xβ are equivalent as are yα and yβ . And,
of course, rα = rβ . Now we rewrite equation (5):

V =
∑

(i,j)∈E

kij [rα(cos(θi)− cos(θj))
2 + rα(sin(θi)− sin(θj))

2)] (9.6)

We can calculate rα from the number of nodes in α so that means that finding the
minimum V is now a one-dimensional problem based on finding the right set of θs. When
we combine (12.5) or (12.6) with equations for magnetic repulsion to prevent node occlusion,
we have a force-directed equation for which the nodes of a group lie on the circumference
of a circle. Now we extend equation (12.5) to include repulsive forces.

ρij = [(xα + rα ∗ cos(θi)− xβ − rβ ∗ cos(θj))
2 +

(yα + rα ∗ sin(θi)− yβ − rβ ∗ sin(θj))
2] (9.7)

V =
∑

(i,j)∈E

kijρij +
∑

(i,j)∈V×V

gij
1

ρij
(9.8)

where gij is the repulsive constant between nodes i and j.
Another important consideration is the set of spring constants used in the above equa-

tions. It is not necessary for the spring constant to be the same for each pair of nodes. It
is also possible for these constants to change during different phases of execution.
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9.6.2 A Technique for Creating User-Grouped Circular Drawings

Now that we have a force-directed technique in which the nodes are placed on circular
tracks, we need to show how we will successfully merge the force-directed approach and the
circular drawing techniques discussed earlier in this chapter. We present a technique for
creating user-grouped circular drawings in Figure 9.24.

Algorithm CIRCULAR-with Forces

Input: A graph G = (V,E, P ).
Output: User-grouped circular drawing of G Γ.

1. Determine the superstructure Gs of G.

2. Layout Gs with a basic force-directed technique.

3. For each group pi in P

(a) If the subgraph induced by pi, Gi, is biconnected
layout Gi with CIRCULAR.

(b) Else layout Gi with CIRCULAR-Nonbiconnected.

4. Place the layout of each group pi at the respective location found in Step 2.

5. For each group pi

(a) rotate the layout circle and keep the position which has the lowest local
potential energy.

(b) reverse the order of the nodes around the embedding circle and repeat
Step 5a.

(c) if the result of Step 5a had a lower local potential energy than that of Step 5b
revert to the result of Step 5a.

6. Apply a force-directed technique using the equations of Section 9.6.1 to G.

Figure 9.24 Algorithm CIRCULAR-with Forces.

Going back to the four goals discussed in Section 9.6, we will attain Goal 1 by using
a basic force-directed technique to layout the superstructure. We will attain Goal 2 by
laying out each group with either Algorithms CIRCULAR or CIRCULAR-Nonbiconnected.
Attaining Goal 3 means successfully merging the results of the force-directed and circular
techniques.

Once we have the layout of the superstructure and each group, we place the layout of
each group at the respective location found during the layout of the superstucture. Now
we have an almost-final layout: it is a matter of rotating the layouts of the groups and
maybe adjusting the order of nodes around the embedding circle. Since we know that
Algorithms CIRCULAR and CIRCULAR-Nonbiconnected produce good visualizations, we
should change these layouts as little as possible. So first, we will fine-tune the almost-final
drawing by rotating each layout and keeping the rotation that has the least local potential
energy. We rotate each embedding circle through nα positions, where nα is the number of
nodes in group α. With respect to determining local potential energy, we need to determine
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the lengths of inter-group edges that are incident to the nodes of α. The rotation of choice
should minimize the lengths of those edges. In other words, we choose the rotation in
which as many nodes as possible are close to their other-group neighbors. Since for each
embedding circle we try nα positions and examine the length of α’s incident inter-group
edges at each position, then the rotation step will take O(n∗minter−group) time for the entire
graph, where minter−group is the number of inter-group edges. As discussed in Section 9.6,
we expect minter−group ≪ m. Then we will “flip” each layout and again rotate. We keep
the rotation which has the least local potential energy. After these steps, it is still possible
that some nodes will be badly placed with respect to their relationships with nodes in other
groups. In other words, those placements cause intra-group and inter-group edges to cross.
In order to address this problem, we will apply the force-directed technique described in
Section 9.6.1. The result of this step will be the reduction of intra-group and inter-group
edge crossings since nodes will be pulled to the side of the embedding circle which is closer
to their other-group relatives.

Because Algorithm CIRCULAR-with Forces makes use of a force-directed technique,
the worst-case time requirement is unknown. However, in practice, we expect the time
requirement to be O(n2) for the following reasons: Step 1 requires O(m) time. Step 2
will be on a small graph and should not require much time to reach convergence. Step 3
requires O(m) time. Step 4 requires O(n) time. Step 5 require O(n ∗minter−group) time.
Since Step 6 is a force-directed technique, it could take O(n3) time in practice; however, the
result of the previous steps will be an almost-final layout and thus should not need much
time to converge. It was evidenced in [ST01] (see extended version in [ST03a]) that when
a force-directed technique is applied to an almost-final layout, it does not take much more
time for convergence to occur. Therefore, in practice we expect this step to require O(n2)
time. Thus, we have attained Goal 4 from Section 9.6.

9.7 Implementation and Experiments

9.7.1 Experimental Analysis of Algorithm CIRCULAR

We have implemented Algorithm CIRCULAR in C++. The code runs on top of the Tom
Sawyer Software Graph Layout Toolkit (GLT) version 2.3.1. We also performed an extensive
experimental study to compare Algorithms CIRCULAR and CIRCULAR-Postprocessing
with the circular layout component of the GLT. The circular layout technique in the GLT
requires O(n2) time [DMM97, KMG88]. The results of the study show that the drawings
of Algorithm CIRCULAR have about 15% fewer crossings on average than those produced
by the GLT. Furthermore, the worst-case time requirement for Algorithm CIRCULAR is
O(m) versus the O(n2) worst-case time requirement for the GLT technique. Algorithm
CIRCULAR-Postprocessing is able to significantly further reduce the number of edge cross-
ings.

The set of input graphs for the experiments included 10,328 biconnected components of
minimum size 10 extracted from the 11,399 Rome graphs [DGL+97], which have between
10 and 80 nodes. The number of edge crossings is measured for Algorithm CIRCULAR,
Algorithm CIRCULAR-Postprocessing, and the circular drawing component of the GLT.
As shown in the plot of Figure 9.25, the techniques produce significantly fewer crossings
on average than the GLT. Specifically the drawings of Algorithm CIRCULAR have sig-
nificantly fewer crossings. And as the plot shows, Algorithm CIRCULAR-Postprocessing
effectively reduces the number of edge crossings even further. The percentage improvement
between Algorithm CIRCULAR-Postprocessing and GLT averages is 30%. Sample drawings
as produced by both GLT and the techniques are shown in Figures 9.26–9.28.
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Figure 9.26 The drawing on the left is produced by the GLT. The drawing on the right is
of the same graph and is produced by Algorithm CIRCULAR-Postprocessing. The drawing
produced by Algorithm CIRCULAR-Postprocessing has 75% fewer crossings than the GLT
drawing. Figure taken from [ST99, ST06].
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Figure 9.27 The drawing on the left is produced by the GLT. The drawing on the right is
of the same graph and is produced by Algorithm CIRCULAR-Postprocessing. The drawing
produced by Algorithm CIRCULAR-Postprocessing has 53% fewer crossings. Figure taken
from [ST99, ST06].
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Figure 9.28 The drawing on the left is produced by the GLT. The drawing on the right is
of the same graph and is produced by Algorithm CIRCULAR-Postprocessing. The drawing
produced by Algorithm CIRCULAR-Postprocessing has 55% fewer crossings. Figure taken
from [ST99, ST06].

9.7.2 Implementation Issues

During Step 4 of Algorithm CIRCULAR, the technique chooses a node of lowest degree with
the following priority: a wave front node, a wave center node, or some lowest degree node.
An efficient way to execute this is to initially sort the nodes by degree into a table of lists
that reflect those categories. The table is updated as nodes and edges are removed from
the graph. A bucket sort is initially used to place each node into its respective category. In
order to keep the table updated, when node v, is processed, we simply move each neighbor
of v into the front of its respective degree list during each iteration (similar to self-adjusting
lists). This way the nodes are retrieved in the desired priority: neighbor, previous neighbor,
and lowest degree node, see Figure 9.29.

Neighbors

Previous Neighbors

Lowest Degree Nodes

...deg

Figure 9.29 The construction of each degree list within the node table. Figure taken
from [ST99, ST06].

During Step 15, the algorithm performs a DFS which will result in a DFS tree. Then we
place the nodes from the longest path within that DFS tree onto the embedding circle and
we merge in the nodes of the remaining DFS tree branches. See Figure 9.30. The longest
path does not necessarily go through the root of the DFS tree as it does in this example.

If the input graph is outerplanar, the drawing produced by Algorithm CIRCULAR will
always be plane; if not, then there might be crossings. In this case, it may be possible
to further reduce the number of crossings by moving nodes to a better position on the
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Figure 9.30 A DFS tree with the edges of the longest path designated by thick lines.
Figure taken from [ST99, ST06].

embedding circle. As noted in the time complexity analysis of Algorithm CIRCULAR-
Postprocessing, the order is dominated by the time required for counting the number of
crossings. Therefore, it is vitally important to the time efficiency of the implementation of
this algorithm that the number of crossings be counted in an effective manner. In order to
lower the average time cost of counting crossings in the drawing, we ignore all edges that
lie on the periphery of the embedding circle. These edges cannot possibly cause crossings.
Also, in the step that determines the number of crossings caused by a single node, either the
clockwise or counter-clockwise direction is first chosen dependent on which has the shorter
arc.

9.7.3 Experimental Analysis of Algorithm CIRCULAR-with Radial

We have implemented Algorithm CIRCULAR-with Radial using Algorithm LayoutCluster1
and edge reduction postprocessing in C++ and run experiments with 11,399 graphs from
[DGL+97]. The plot in Figure 9.31 shows the average number of edge crossings produced
by the circular layout component of the GLT and Algorithm CIRCULAR-with Radial. As
is shown by these results, the average number of crossings in the drawings produced by the
technique is about 35% less than that of the GLT technique [DMM97, KMG88]. Sample
drawings from both the GLT and Algorithm CIRCULAR-with Radial are shown in Figures
9.32 and 9.33.

The drawings produced by Algorithm CIRCULAR-with Radial clearly show the bicon-
nectivity characteristics of networks. And although these drawings have a low number of
edge crossings, they may show more details than a user would wish to see at one time.
Therefore, we suggest that Algorithm CIRCULAR-with Radial can be used in an interac-
tive environment in which the superstructure would be shown and the user would click on
a node to see the details of the cluster; see Figure 9.34 for an example. Alternatively, the
levels of visualization could be combined and some clusters shown in detail while others are
shown with a single node.
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Figure 9.31 This plot shows the average number of edge crossings produced by Algorithm
CIRCULAR-with Radial and the Graph Layout Toolkit when executed on 11,399 graphs
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Figure 9.32 The drawing on the left is produced by the GLT and the drawing on the
right is of the same graph and is produced by Algorithm CIRCULAR-with Radial. Figure
taken from [ST06].

9.7.4 Implementation of Algorithm CIRCULAR-with Forces

We have implemented Algorithm CIRCULAR-with Forces so that all nodes and embedding
circles are given an arbitrary initial placement. Then the force-directed equations of Section
9.6.1 are applied to the graph with the placement of group embedding circles frozen. See
Figure 9.35 for a sample drawing.

An interesting behavior we noticed is that the drawing with minimal energy is not nec-
essarily the best circular drawing. In circular drawing, a major goal is to reduce edge
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Figure 9.33 The drawing on the left is produced by the GLT and the drawing on the
right is of the same graph and is produced by Algorithm CIRCULAR-with Radial. Figure
taken from [ST06].
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Figure 9.34 Example of interactive circular visualization. Figure taken from [ST06].
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Figure 9.35 Sample user-grouped circular drawing from the preliminary implementation.
Figure taken from [ST03b].
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crossings. However, it is well known [DETT99] that reducing crossings sometimes means
the compromise of other aesthetics, especially area, and area is related to minimum energy
in spring systems. We propose adding springs from each node to its initial placement on
the plane with the spring constants for these springs being high. This should keep these
nodes from gravitating toward each other too much and causing extra crossings. We also
suggest creating dummy nodes which are placed in the center of each embedding circle and
attaching strong springs from them to every node in their respective group.

9.8 Conclusions

Circular visualizations of networks which show the inherent strengths and weaknesses of
structures with clustered views are advantageous additions to many design tools.
We have presented an O(m) time algorithm for drawing circular visualizations of bicon-

nected graphs on a single embedding circle. Not only is this technique efficient, but it also
produces a plane drawing of the biconnected graph if such exists. Extensive experiments
show that the technique works very well in practice. We have also presented an O(m) time
technique which decomposes the given graph into biconnected components and visualizes
each cluster on a separate embedding circle. This technique has been implemented and
results of an experimental study also show this algorithm to perform very well in practice.
Both techniques produce drawings that clearly show the biconnectivity structure of the
given graphs and also have a low number of crossings. We have also discussed a framework
for creating circular graph drawings in which the grouping is defined by the user. This
framework includes the successful merging of the force-directed and circular graph drawing
paradigms. Algorithm CIRCULAR-with Forces is fast and produces drawings in which the
user-defined groupings are highly visible, each group is laid out with a low number of edge
crossings, and the number of crossings between intra-group and inter-group edges is low.
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