
CompLex
(VC-SPG)

An OpenSoundControl (OSC) and
Voltage Controlled Signal Path Generator

Lex van den Broek

Master Thesis
Instrument & Interfaces

Institute of Sonology - Steim
Royal Conservatoire, The Hague (NL)

May 2017

Supervisor: Edwin van der Heide

Abstract

This thesis describes my electronic and artistic research into the design of what I have
called the Voltage Controlled Signal Path Generator (VC-SPG). It is a switching audio
matrix that can both be seen as a new tool, and as a part of a musical-instrument. As we
will see, it can be applied in an analogue electronic music studio setup, a modular
synthesizer or in an interactive art-installation. This master research project is a
continuation of my previous work at the Royal Conservatoire where I design new
technology for Art and Education.

The fundamental core of my research project is the development of an audio-matrix
with 16 inputs and 16 outputs that can be fully configured, controlled and programmed
with Open Sound Control (OSC) and that can be synced and triggered with external
analogue signals. In its present state the VC-SPG has become a new type of generator that
is able to switch between different studio presets and form the core of new audio
experiences and new compositional approaches.

I will describe and reflect upon both the technical challenges and development and the
musical and artistic results shared with me by students and professionals who used the
VC-SPG over the last year for their own work. They all experienced the VC-SPG to be
adding a new dimension to their creative process. We can conclude that the VC-SPG is
not only a new practical tool, but also a creative instrument for electronic-music and art.

Acknowledgements

A project like this can’t be developed successfully without the help and input of
dedicated coaches, colleagues, students, family and friends. Thank you all for helping me. I
want to thank some people who really spend time and effort to give my thoughts new
direction.

Lots of thanks to my wife Anita - she is a great support. Edwin, thanks for being my
supervisor, for coaching and support and for pushing my thoughts into new directions - I
needed that! Johan and Robert, I liked our fruitful brainstorm sessions. Let's continue
these sessions! My coaches at Steim, Kristina and Joel. Thank you for the inspiring chats.

Since I’m always in my office at the Conservatoire developing, programming,
measuring, testing, teaching and coaching, a lot of people drop by on weekly bases for a
coffee, a favor or a chat. Many of these chats were of great help for my research as well.
Sometimes it’s about the things that are not being said, that triggers my thoughts and
ideas. My colleagues at the EWP, thanks for your support and giving me time to do this
project.

Kees, Marko, Paul, Siamak, Richard, Frank, Jo, Kasper, Justin, Raviv, Peter, Ruben,
Guiliano, Andrea, Kyriakos, Chris, Rolf, Diana, Karst, Kacper and Max:

Thanks!

Content

Acknowledgements
Abstract

1. Introduction 1
Analogue studio general configuration 1
Signal paths 2
Pre-research activities 4
From idea to research 5
Stockhausen studio matrix 5
RC studio project 6
Search for equivalent devices 8

2. The VC-SPG basics 9
3. Hardware design 11

The microcontroller 12
AD75019 chip 13
The Lantronics Xport 14
Operational Amplifiers 15
CV and Trigger adjustment 16
Circuit layout 17
Printed Circuit Board 18
SPG prototypes 19

4. Software design 22
Assembly 22
Data transfer example 24
SPG main-routine 27
External and internal interrupts 29

Receive OSC interrupt 29
Timer interrupt 30
Signal change interrupt 30

Sequence routine 31
Max/Msp 32

5. VC-SPG Features 35
Initial startup 35
Mixing function 35
Sequence with the SPG 37
OSC as a source 37
External triggers 38

CV-speed 39
CV-preset 40

Audible clicks 41
SPG switching quality 41

6. SPG Communication 43
OpenSoundControl (OSC) 43
OSC messages 45

patch (pa) 45
store (st) 46
configuration (cf) 47

SPG and network communication 47
SPI serial protocol 48
RS-232 serial protocol 48

7. Applications and roles 49
VC-SPG Roles 49
Programmable routing device 51

Signal routing and automation (for guitar) 51
Live performance tool 52
Remote studio 53

Content (continued)

Audio and CV generator 53
Remote signal routing 53

8. Musical and artistic results 55
My personal results 55
Artistic results 57
Software results 60

9. Conclusion 63
Future technical ideas and recommendation 64

Appendices 66
A Block diagram PIC18f2523 67
B PIC18F2523 _pinout 68
C Circuit-layout 69
D1 Model 1 70
D2 Model 2 72
D3 Model 3 74
D4 Model 4 76
D5 Model 5 77
D6 Model 6 78
E Flowchart Interrupt 79
G Max/Msp patch 80
H Printed Circuit Board (PCB) 80
I Assembly code (v95) 82
J VC-SPG specifications 98

Bibliography 99
Endnotes 100

Page 1

1 Introduction
Working in an analogue electronic music studio environment requires working with

patch cables enabling the studio user to interconnect all types of sound modules in order to
generate sounds. Modular synthesizer setups also depend on making inter-connections
first, before all the aspects of the sounds can be explored. To this day the connections or
patches in electronic studios or modular-synths are created with wires connecting inputs
and outputs. These connections are still static.

In this master-research project I will introduce and explore the electronic design of a
new type of instrument, that is capable of changing these hardwired connections, and can
dynamically switch between presets controlled by a remote computer or by external
signals.

What would the influence be in the way electronic music is composed when this signal
path generator will be part of an electronic-studio? Will the introduction of this generator
give the composer a new tool to compose electronic music and if so, how will it be applied?
To be able to answer these questions, I have built multiple models of the VC-SPG (Voltage
Controlled Signal Path Generator) to give users the opportunity to test, evaluate and
explore its potential.

1.1 Analogue studio configuration
 As head of the Electronics Workshop (EWP) at the Royal Conservatoire, I experience

a lot of studio-configurations in general, but especially electronic studios. Electronic
studios, much like modular synths, consist of a lot of different sound devices, effect
processors and individual modules and in combination with sound-recorders, computers,
audio-mixers and loudspeakers new sounds and new music can be explored and created.

The design of the analogue studio of Sonology, which is a classic voltage controlled
studio and is based upon the use of an analogue patch panel. See figure 1.1. Working in
this studio means you have to make the right interconnections between different modules
and make setting and adjustments to create effects like modulation, pitch change, timbres,
volume-change and many more effects and sounds.

Figure 1.1. Analogue studio Bea-5 with the patch-panel (on the right) where all ins and outs are located.

In the first year of the master research project, Kees Tazelaar1 introduced me to the

Page 2

fundamental control-voltage techniques and explained to me the analogue-studio
philosophy. Since the original project title was to design a patch-generator, the difference
between the word ‘patch’ and hardwired connections are a source for discussion.
According to Kees, and I agree with him on this point, a patch is not only a hardwired
connection between two points, but it is a combination of the connection with the right
settings of the linked modules. If the frequency range of a generator and the wave-shape
selection is changed, also the resulting sound will change and that change of sound is
independent of the hardwired connection. In other words, not only the connection or
routing of the wires make the sound, it’s the combination of the settings and the
connections together that define the word ‘patch’.

The patch-cables provide hard connections between inputs and outputs of the different
sound- and effect-modules (e.a. triggers or control-voltages). The output of one module
can drive the input of other module(s). The patch itself, consisting of multiple cables and
the right settings, determines which inputs and outputs are inter-connected and defines the
range of sounds that are created in the studio-setup. Currently the position of the patch-
cables can only be changed manually. The patch itself is static and will only change if the
user changes the connections manually.

My research involves the design and realization of an interface that can switch in total
256 connections or 16 inputs and 16 outputs simultaneously. It can switch the connections
triggered by an external signal, so the studio or modular synth itself can be used to control
(and sync) the moment of switching to the new preset or patch. Furthermore there are two
control voltage inputs that determine the speed of the sequence and that determine the ‘id’
of the next preset in line (the sequence order).

Since the beginning of this research I also noticed that a matrix of 16 in and 16 out is
not really enough to cover all connections in a regular studio setup, but it is a beginning
and it will be enough to investigate whether this interface is an interesting new
composition-tool.

1.2 Signal Paths
Back in the days the computer was not yet a part of our daily live, telephone

connections were manually fixed by people sitting in front of huge panels. From the first
moment analogue synthesizers were (commercially) used in the beginning of the 60’s, the
sounds produced were dependent of the physical connections created with cables. The
combination of the different modules that were connected with these cables formed the
core of the synthesized sound and this was, and now still is, a very static connection with
patch-cables.

Page 3

Figure 1.2

Once the connections were made and the fundament of the sound generation was
found, the limits could be explored only within the boundaries of these hard-wired
connections. With big studio setups it could require an effort to re-patch every connection
and the patches made had to be well documented. Already back then the time available in
an expensive analogue studio was limited and the users wanted to use their time in the
most effective way possible. An ingenious system was invented to store and re-call hard
wired connections, in order to save precious time. See figure 1.3. The wires were
connected to a transportable or portable plate, that could be removed and re-installed so
the physical connections were stored and re-called.

Step 1 shows the (very simple) active patch. The storage-device showed in figure 1.3,
was integrated in a studio setup attached to the back of the device. In step 2 the lever is
moved upwards to detach the plate from the actual patch-panel. Step 3,4 and 5 show how
the new patch is moved in place and ‘activated’ by moving down the lever.

To create connections between two or more points, you need wires. These wires make a
physical connection between the output of one device and the input of another. At least
that is what was required in the old days and it still holds true today.

Figure 1.3. Switching between presets, old style.

At the end of the 1960’s the EMS company created theVCS3 (Voltage Controlled
Studio version 3). The physical cables were replaced by pins and with placing one pin
between two points in the matrix (one row and one column) a connection between
modules was made. The use of the matrix within these VCS3 synths formed a part of the

Page 4

inspiration to develop a fully automated matrix version, introducing the possibility to work
with dynamic and time-based connections as part of the sound generation and composition
of electronic music.

Figure 1.4. The VCS3 Synthy or Putney

1.3 Pre-research activities
In 1996 I started working for the Electronics workshop (EWP) at the Royal

Conservatoire in The Hague. My electronics mentor and colleague Jo Scherpenisse2 and I
started with the design of one of the first small sensor-interfaces in that time, the Microlab.
The Microlab was a small MIDI3 sensor-interface with 5 analogue inputs and a 7-bit
resolution. It could be assembled and built by students themselves and it was cheap
enough for them to also purchase. The design was based upon an (for that time), advanced
Microchip PIC16F series microcontroller. Being able to convert changing voltages into 7-
bit MIDI controller data, was a great step forward for the creation of musical interfaces
and interactive installations. Students were now able to build their own MIDI-instrument
and control digital processes with signals that originated from the physical world by using
sensors.

The next step in the development of new interfaces was the inverse. The possibility to
convert digital MIDI data into physical control and actions. For example conversions into
CV (Control Voltage), servomotor drive, relay switching, stepper-motor drive, pulse width
modulation (PWM) and many more. With this new technology, the students could realize
more innovating musical instruments and interactive installations. A lot of the instruments
and installations built at that time were based upon this technology — see some examples
in figure 1.5.

Figure 1.5 Ipson64, IpsonCompact and OSC-CV board

Page 5

After working with MIDI for several years and teaching students how to apply this
technology and after my colleague Jo Scherpenisse retired, I continued with the design of
new electronics and the search of new ways for faster communication and higher control
resolution. MIDI in that time was and still is limited to a 10-bit (0-1024 steps) resolution
and had a relative slow bitrate of 31,25 kbit/s. In my search for new technology, starting
around 2004, I encountered Open Sound Control (OSC)4 as a new musical
communication protocol. I also discovered a small embedded web server component,
called the XPort. This Xport is a complete embedded web server that communicates using
ethernet connections or Wifi. The combination of the Xport and OSC opened up a new
world for me to design new OSC-sensor interfaces, like for example the IpsonLab and the
IpsonCompact©.

1.4 From idea to realization and research
The idea for developing an audio-matrix that can be fully controlled through

OpenSoundControl and that can be driven by analogue voltages and external triggers
actually arose because of multiple practical requests within the Conservatoire: the
introduction of a new mixing console in the Karlheinz Stockhausen-studio5 and the
introduction of new V-FUG’s in analogue studio Bea-5 and the refurbished VCS-3
synthesizers with its classic patch-panel matrix. All these subjects, combined with my OSC
interface design experience, contributed to the idea of this research project.

1.5 Stockhausen studio matrix design
The initial request that motivated me to look into new types of switching circuits, was

the purchase of a new mixing console for the Stockhausen studio at the Royal
Conservatoire. The old mixer that had to be replaced because of its age and constant
growing technical problems, was originally designed and built by technicians of the
Institute of Sonology. This audio-mixer was equipped with some very impressive routing
capabilities that were not to be found in any other modern mixing console.

It had the possibility of routing a lot of different sources directly to the main faders and
from there to the four big JBL loudspeakers. For composers working frequently in the
studio it was of great importance that this feature would be restored if a new mixer was to
be installed. One of the practical reasons was the position of the audio-mixer, the recorders
and the four loudspeakers in the studio. Sometimes it was necessary to listen to the left-

Page 6

and right-speaker working behind the audio-mixer and in other moments, when
controlling the recorders and being turned 90 degrees, two other speakers had to be the
left- and right one. With the push of a button the routing of the signals to the speakers
could be changed.

The request to re-design this feature in the KHS-studio was the reason for me to look
into a solid and more modern switching solution for the first time. I designed a first version
of the matrix and re-introduced this unique routing possibility back into the KHS-studio
with the use of a small chip called the AD75019 audio switching array (see figure 1.6).

Figure 1.6. Design sheet, electronics and final result of the routing matrix for the KHS-studio.

In the new setup the old matrix-switches still were used to drive the new designed
matrix-electronics. Every separate push-button selected a different signal-path from the
source, directly to the speakers.

The remote-controlled studio, or RC-studio, forms a side track of my research and
actually represents the start of the VC-SPG research. This modular synthesizer-setup
consists of different modules in one 19-inch rack which are all inter-connected through the
first version of the matrix interface — see figure 1.7.

Figure 1.7. The first matrix-board for the RC-studio

The RC-studio is a small analogue modular synthesis system, with 8 x VFUG (Voltage
controlled Function Generator), one VOSIM (Voice Simulation), one VSF (Variable
State Filter), a matrix and multiple VCA’s (Voltage Controlled Amplifiers) that all can be
remotely controlled with OSC. The generated audio result is streamed to the internet and

Page 7

can be listened to by anyone connected to the internet — live, self-played, internet radio.

Figure 1.8. RC-studio block diagram (left) and the actual device (right)

The idea to design a RC-studio was realized in small steps and started in 2009 after or
during building the matrix for the Stockhausen studio. It started with the installation of 12
brand new VFUG’s in analogue studio Bea-5, leaving the 8 old VFUG’s unused and
waiting to be refurbished, modified and re-used. In that time, I also designed a new 12-bit
OSC-CV board and the VFUG’s, which have a voltage input to control the frequency,
presented themselves to be a great testing object to listen to the pitch-change driven by
OSC. This test-setup was the first step in the creation of the RC-studio and it offered me
the ideal platform to test new digital to analog conversions.

Of course a remote controlled pitch-change for the VFUG driven by OSC-messages is
not enough to fully control the VFUG and the features had to be extended. The next step
was controlling the switches located on the front of the modules for selecting the wave
shape and frequency range of the VFUG. The switches on the front are therefore bypassed
with physical relays and are also controlled by OSC-messages - yet another conversion:
OSC to relay control. And since it also is important for any analogue studio to be able to
make inter-connections between different modules, the router design already created for
the Karlheinz Stockhausen studio, could be used as a remote controlled patch panel. This
was the next step in the creation of the RC-studio, the integration of a remote controlled
patch-panel, designed with the AD75019 audio matrix switch array Controlled by digital
data, this audio matrix can be used to change analogue signals and connections. See figure
1.7.

The AD75019 is a chip that can make hard connections between multiple points. A
hard connection means the change of resistance between infinity (no connections and
therefor equals the off position) and 150 ohms (equals the on position). The switches are
also bi-directional, which indicates the current can flow both ways.

For the implementation of the AD75019 in the design of the matrix, I added operational
amplifier (opamp) circuits to the input and the output. The main reason for this choice was

Page 8

the addition of the creation of the audio- and control voltage summing feature. When
multiple inputs are selected to be routed to one output, all these inputs will be added
(mixed) correctly by the opamp summation circuit (inverting amplifier).

1.6 Search for equivalent devices
During the development of the first model of the VC-SPG, I searched the internet for a

device with the same features that I had in mind for the VC-SPG: 16 x audio inputs, 16 x
audio outputs, programmable and controllable with the computer and able to work stand-
alone, controlled by analogue signals.

The first Google searches for ‘OSC matrix’ is pointing to my own website
(www.ipson.nl), where I describe an older version of a matrix board that can be driven
with OSC. After some more extensive search I found a version of an equivalent matrix
board, named the Sequential Switch Matrix6, see figure 1.9. This Eurorack module has 4
inputs and 4 outputs and is manually programmable and does not support OSC. It does
have control voltage inputs and the Eurorack module is specially designed to be part of a
modular synth only.

Figure 1.9 The sequential switch matrix.

http://www.ipson.nl

Page 9

2 The VC-SPG basics
The projects described in the introduction, in combination with my expertise of

controlling analogue and digital electronic signals, were the key ingredients for the design
of the first version of the VC-SPG. The following section covers the main features of the
VC-SPG including its routing architecture. Figure 2.1 shows the block-diagram of the
complete VC-SPG, designed around the PIC18F2523 microcontroller running the self
developed assembly firmware, the AD75019 switching-array and the embedded web-
server, called the X-port.

Figure 2.1. The gray block shows the complete interior of the SPG interface.

The fundamental feature of the VC-SPG is the possibility to dynamically control
analogue signal-paths (patch cables) with the use of a computer and by means of external
voltage-triggers and/or control-voltages. In combination with the self-developed Max/Msp
patch (see page 32) the created signal-path presets can be activated sequentially, played-
back from a list or the presets can be uploaded to the local memory of the SPG. In total 32
connections can be changed with one trigger or click. The SPG has a local memory that
can store up to 32 different presets, all with their own preset-id. If the presets are stored
in local memory, it can operate stand-alone and sequence through these presets by itself
without the computer connected, making it a real hybrid between the digital- and analogue
world. A sequence of steps through the presets, at high or low speeds, can be controlled
and synced by external control voltages or triggers. This turns the SPG into a generator,
generating sequences of changing physical connections.

The VC-SPG, or CompLex as a few students already nicknamed it, is a programmable
and voltage triggered audio-matrix. The SPG has 16 inputs and 16 outputs, all able to
handle signals in the audio range between -12V and +12V. The communication is
performed with OpenSoundControl (see page 43) over an ethernet connection and the
interface has 3 external analog control inputs (see figure 2.2):

Page 10

1. The external trigger input can be connected to an (audio) pulse changing between
0V and 12V, and whenever this signal changes its value from 0V to 12V (rising edge) or
from 12V to 0V (falling edge), the VC-SPG will step to the next preset in local memory.
With this input the VC-SPG can be synced with external processes and change presets
accordingly.

2. The control voltage to speed (CV-speed) input converts incoming voltage changes to
the speed of the sequence. If the CV input is low (0V), the VC-SPG will step through the
local stored presets with a low speed. High sequence speeds are achieved with higher
values of the CV input.

3. The third input converts the voltage value to a preset-id. Changing the voltage on
this input, will also activate the corresponding preset.

The VC-SPG can be used in many different scenarios, but there are two mainstream
applications. First the use in combination with a computer connected running software
generating OSC-messages and the second application without the computer connected,
stand alone. In figure 2.2 a computer is connected and either way it will always initiate
with a computer connected due to the fact that an initial set of presets has to be
programmed and stored in the VC-SPG.

Figure 2.2. Block diagram of the VC-SPG communicating with the Max/Msp patch

The next two chapters 3, Hardware and 4, Software both describe the pure technical
design approach of my research project. Since I designed a complete new instrument that
consists of hardware and software, it is of importance to share these detailed technical
aspects and topics in this thesis. For those readers, who actually do not have any technical
background, it may be more suitable to advance to chapter 5, "VC-SPG Features” on page
35.

Page 11

3 SPG Hardware design
To create a device like the Voltage Controlled Signal Path Generator (VC-SPG), a

combination of main components is needed, which will be focussed on in this Hardware
section.

Figure 3.1

First of all the embedded web server, or Xport, as main communication port. This
webserver, made by Lantronics, sends and receives UDP and TCP-IP data to and from
the network and converts this data into the RS-232 serial data protocol7 (see
communications chapter for more detailed information). The brain of the design is the
PIC18F2523 microcontroller which handles all incoming- and outgoing-data, reads the
analogue signals and drives the switching process. The actual switching is realized with the
Analog Devices AD75019 switching audio matrix.

In this chapter I will focus on the important properties of these main components and
explain them. The hardware design of the whole device is somehow generic when you
compare it with most of the OSC-devices I already designed: the Xport transmits and
receives the OSC-messages and communicates this data-flow with the microcontroller (see
figure 3.1). The self-developed assembly software within the microcontroller (also called
firmware) determines the functionality and will decide what actions will be taken. The
complete data flow and Assembly design will be covered in chapter Software design
starting on page 22.

As shown in figure 3.1, the X-port sends and receives OSC-messages and
communicates directly with the microcontroller using the RS-232 protocol. Depending on
the received OSC-message address-tag and data content, the microcontroller will send the
appropriate switch information to the matrix and the audio matrix configuration will be
changed accordingly. To be able to drive the SPG with analogue external signals, the
microcontroller can also receive control-voltages or trigger-pulses and convert these
signals to switching information. An important part of the functionality of the SPG is also
determined by the specially developed Max/Msp software patch that can be used to
control and program the SPG from a computer.

Page 12

3.1 The microcontroller (PIC18F2523)
“A 28-pin enhanced flash microcontroller with 12bit A/D and nanoWatt technology”8.

That’s the main title of the Microchip data-sheet or user-manual, containing 390 pages full
of detailed information. Because the PIC18F2523 is the main component of the interface
design, it is of big importance to explain some of the main features of this controller. The
PIC18F2523 package is a 28-pin DIP (dual in line) chip that has 28 physical pins to be
connected. Like most chips, or active components, this controller needs two pins for the
power connection +5V (VCC) and 0V (GND).

Pin 1 of the controller, see figure 2, is the master-clear pin. When this pin is connected
to 0V (GND), the program running inside the microcontroller, also referred to as the
firmware, will reset the program running inside and it will restart from the top.

Figure 3.2. The pin-out of the PIC18F2523 and the package.

Check appendix A for a complete block diagram of the PIC18F2523 microcontroller.
Like any microcontroller, almost all the pins are inputs and/or outputs, clustered in ports.
This particular 28 pin controller has three of those 8-bit ports, called porta, portb and
portc. The pin names referring to these ports start with a capital R, followed by A, B or C
(see figure 2). All ports are 8-bit wide which means portb for example consists of portb,0
(=RB0) until portb,7 (=RB7), making 8 bits in total. All communication with the
peripherals (the X-port, the audio matrix, the switches) is realized through these 3 main
ports. Within the text and the figures in this document, the port-numbers are also referred
to as RB0 (= portb,0) or RA5 (=porta,5).

As part of the multifunctional design of the microcontroller, multiple functions are
gathered in one pin. Depending on the configuration of the microcontroller or initialization
part of the process, the pins will have a specific function. This all starts with the definition
of inputs and outputs within. All three 8-bit ports can be inputs and/or outputs within the
same application. The definition of inputs and outputs within the design of the interface is
a puzzle and often the choice of the type of microcontroller depends on how many inputs
and outputs it has.

 See figure3.3). The colours are used to divide the signals into different categories.

Page 13

Green is input for the controller, these can be control-voltages or switches. Yellow is data
communication using the SPI protocol (Serial Peripheral Interface), where pin 11, 12 and
13 transfer the data to the audio switching array and pin 26, 27 and 28 are communicating
the preset numbers in manual mode to the 5 external led’s. The light-blue colour indicated
the connection with the X-port, communicating RS-232 with the processor (Rx = receiving
and Tx = transmitting). The black and red colours are used for the power supply and one
dark blue connection is used to indicate the master clear (MCLR) pin. In appendix B this
same figure with more detailed information about all individual pins can be consulted.

Figure 3.3. The pinout of the microcontroller with SPG functionality.

3.2 AD75019 16 x 16 Crosspoint Switch Array
The main component of the VC-SPG that does the physical switching is the AD75019,

made by Analog Devices. This chip contains 256 analogue switches in a 16 x 16 array (see
figure 3.4. The switches are bi-directional, which means either the X or the Y can be input
or output. Because the design of the chip is based on CMOS9, the resistance of the
switches in ‘on’ position is 150 Ohms and in ‘off’ position the value is infinite. The data-
sheet of the chip describes this: “the AD75019 is fabricated in Analog Devices’ BiMOS II
process. This epitaxial BiCMOS process features CMOS devices for low distortion
switches and bipolar devices for ESD protection”. In the design of the VC-SPG the
direction of the signal is determined by the additional operational amplifiers (opamps)
which function like an audio buffer and audio mixer and it defines the input and output.

Page 14

Figure 3.4. 256 switches in a matrix and the functional block diagram of the AD75019.

Besides the power connections of -12V, +12V, +5V and GND the AD75019 has three
connections for the data communication: the PCLK, SCLK and SIN. The method of
transferring the switch information from the processor to the array is also referred to as
SPI or I2C. In the chapter ‘SPG communication’ (page 43) this method is explained in
more detail. SIN is the serial data input and all data passes through this input. The
(switch) data is ‘clocked in’ with the SCLK. This is a pulse signal changing from 0V to 5V
at a high frequency rate. Every time this signal changes from 0V to 5V, also called the
rising edge, one bit is clocked into the onboard data register. Per writing cycle for the
whole array, this has to be done exactly 256 times. After all bits have been ‘clocked in’ into
the data-register, the new status of the switches has to be activated. This is done by
changing the PCLK signal, which on a falling-edge (5V to 0V), will store and activate the
new switch configuration.

3.3 The Xport
The Lantronics X-port is an embedded ethernet device server and is designed to add

serial capability to any electronic device that has serial communication available. The
Xport can receive and send UDP/TCP-IP packages from the internet and convert this to
the serial communication protocol RS-232. The component looks like a single RJ45
connector (figure 3.5), but on the inside a complete 32-bit processor is running to process
all incoming and outgoing data.

Figure 3.5. The X-port, a complete embedded ethernet device server.

Page 15

The Xport has a RS-232 input and output which within the configuration of the SPG
both are directly connected to the Tx and Rx ports of the microcontroller. The OSC-
messages that are send from the computer to the SPG use UDP (User Datagram
Protocol) to travel over the net. UDP is a standard data protocol. When the OSC-message
is received by the X-port, the data is converted to RS-232 and transmitted to the
microcontroller.

To configure the X-port and tweak its settings a standard web browser is used. During
the building process of the SPG, the Xport is already configured and tweaked to be the
perfect communication partner for the microcontroller. The only variable that has to be set
if a new user is connected to the SPG, is the remote IP-address (this is the IP-address of
the user).

3.4 Operational Amplifiers (Opamps).
When audio signals are being patched, mixed or switched it is almost always realized

with the use of operational amplifiers, or opamps. An operational amplifier is an ideal
building block for all kind of electronic applications, but especially for handling audio-
signals.

An opamp has 3 important properties, that make it ideal for electronics. (1) It has a
very high input impedance which causes the current flowing into the opamp to be almost
zero. (2) The amount of amplification between in- and output is possibly infinite . Without
feedback compensation the output of the opamp will always hit the positive- or negative
power-supply rails. (3) It has a very low output impedance, which allows the opamp to
have a strong output current. The chapter ‘Features’ (see page 35) already focussed and
describes the use of the opamps for the input and the output of the matrix. The circuits
used for both input and output are called ‘inverting amplifiers’ and are one of the most
common applied mixing circuit designs.

Figure 3.6. Inverting amplifier circuit.

Figure 3.6 shows an inverting amplifier with Rf (feedback) and R1. The ratio of these
resistors determine the amount of amplification, and in case of the in-and output of the
SPG, both resistors are 10kOhm - the amplification is -1. If in case of the SPG multiple
inputs are selected to be routed to one output, a summing amplifier will be created, like
shown in figure 3.7.

Page 16

Figure 3.7. Inverting amplifier with multiple inputs and U-out is the sum of all inputs.

As already highlighted in chapter ‘Features’, connecting multiple inputs to one output is
creating a perfect addition (mix) of the input signals on the output. If one input-signal is
selected to be routed to multiple outputs, the inputs signal has to be split .With the
configuration the SPG has currently, the amplitude of the input-signal will decrease every
time the signal is split. Every time an input signal is split, multiple negative inputs of
different opamps are tied together, confusing the amplifier circuit setup. There are
solutions to this problem, but at this point this ‘feature’ is still not fully implemented.

3.5 CV- and Trigger-input adjustment
The SPG contains three external inputs that have to be conditioned before the signal

can be fed to the input of the microcontroller. The microcontroller is so called TTL-
compatible. This means the inputs of the controller cannot exceed voltages higher than
+5V. A standard euro-rack modular system uses audio signals that vary between -5V and
+5V. The pulses and triggers of this system are in between 0V and +12V (measured with
the Doepfer A-100 system).

These values are too high for the microcontroller to process, and therefore these
signals have to be conditioned. The variation from -5V to +5V has to be converted into 0V
- +5V and the pulses have to be lowered from +12V down to +5V.

Figure 3.8. Conversion of the cv-speed is inverted.

The conversion from -5V to +5V is realized with an opamp circuit as shown in figure
3.8. The input control voltage (from the euro-rack system) is first divided by two with the
use of a 10k potentiometer connected to the input. Because the input signal is connected to
the negative input of the opamp(-), the output will be inverted (inverting-amplifier).
Unlike the conversion of the control-voltage for the preset-id, this control-voltage has to

Page 17

be converted due to the use of the onboard timer where a small number (= a low value)
results in high frequency. The trimmer potentiometer on the positive input creates an
offset voltage, so the new ‘zero-crossing’ on the output is lifted to 2,5V as shown in the
graph. A similar circuit is used for the conversion of the CV-preset-id, except this
conversion does not have to be inverted.

The external trigger pulse coming from the euro-rack modular is switching between
0V and +12V. This has to be converted in to 0V and +5V. There are multiple ways to
realize this conversion, for example with the simple use of an avalanche-diode. An
avalanche-diode has a certain threshold voltage after which it starts to experience an
‘avalanche breakdown’. In other words, if the voltage parallel to the +5V-avalanche diode
exceeds +5V, the voltage will not be higher than 5V because of the avalanche effect. The
diode acts as a compressor.

In the modular version of the SPG the solution of an opamp was used. If an opamp has
an applied power of +5V, the output will never exceed this 5V, because that’s the maximum
it can deliver. If +12V is applied to the input, the output will be +5V. Take a look at figure
3.9.

Figure 3.9. Follower circuit with opamp powered with +5V.

3.6 SPG circuit layout
Below in figure 3.10 the complete circuit layout is shown. A more detailed and

extracted version of the same picture can be found in appendix C. In the process of
designing a new device, drawing the circuit layout is not only very important for document
reasons, but it is also the fundament for drawing the Printed Circuit board.

Page 18

Figure 3.10 Full schematic of the VC-SPG (minus the additional modifications)

Drawn with Eagle software, the circuit-layout shows all the main components, some
smaller components and the power-supply all inter-connected to the right pins. There is a
difference between the thin red wires and the thicker blue wires used in the circuit-layout.
The thicker blue wires are so called ‘busses’. They consist of multiple wires going to and
coming from the same component. Busses are normally used to route address-lines or data-
lines. Using these multi-wire busses in a layout creates a clearer view of the circuit instead
of drawing every wire separately, like the red-ones. The biggest surface of the circuit is
used for the 32 operational amplifiers, 16 times input and 16 times output (see page 35).

The one part that is not drawn in this circuit layout, but will be added an updated
version, is the adjustment of the control voltage from -5V/+5V into 0V/5V and the
adjustment of pulses from 0V/12V to 0V/5V. This part of the circuit is added in a later
stage and will be part of a modification for the next model.

A very important and obvious part is the power-supply section. The SPG uses three
intern voltage regulators to create +12V, -12V, 5V and 3,3V. The use of +12V and -12V
(balanced power-supply) is a common way of powering operational amplifiers and audio
electronics in general. Audio-signals, or AC- signals, move from positive- to negative
values and if these signals have to be modified (amplified, filtered, muted, etc …) a broad
dynamic workspace is needed to realize this. Hence the balanced power-supply.

The +5V, a part of the external power adapter as well, is used for the digital electronics
inside the SPG. It powers the microcontroller and the digital part of the audio-matrix. The
3,3V, extracted from the +5V with a LF33 voltage regulator, feeds the current consuming
Xport. The Xport needs quite some current to operate, around 200mA in quiescent state.

3.7 Printed Circuit Board
To make production of the SPG easier and faster and to offer the students the

Page 19

possibility to build and construct one, it’s a must to design a Printed Circuit Board (pcb).
On a pcb all connections are pre-made according to the schematic and the only thing the
user has to do is place the components on the right location and solder the pins to the
board. The pcb, drawn with EagleCad software, is a straight translation from the circuit-
layout. It is a double sided pcb, which means that both bottom and top layer consists of
copper connections.

Figure 3.11. SPG printed circuit board.

The left side of figure 3.11 shows the component side, with only the names and the shapes
of the components printed on top. The right side of the figure shows both the top (red) and
the bottom(blue) copper layers. The big surfaces are ground planes and are used to keep
the ground impedance as low as possible (more copper) and it also has environmental
reasons - the less copper that is removed, the better.

Figure 3.12. SPG printed circuit boards wired up

3.8 The SPG prototypes
To be able to test the hardware design of the SPG and have students practically work

with the instrument and share their feedback, I made multiple models to be tested. Since
there are multiple standards concerning the connectors in the analogue synthesizer world,
the models are provided with different kind of connectors and with different shapes. A

Page 20

quick reference list of all the models built, can be found in appendix D, page 70.
The patch-panel of analogue studio Bea-5 is designed with so called banana

connectors. This is a robust connector with only one signal present. The setup of the
analogue studio has one collective GND connection for all the modules within the studio.
If connections have to be made between these modules, only the signal has to be patched -
the GND connection is already made. Figure 3.13 on the left shows the banana-connectors
and patch-cables and in the middle a small part of the patch-panel from analogue studio
Bea-5. On the right side the SPG prototype with female banana connectors, to be
interfaced with the patch-panel of Bea-5.

Figure 3.13 Banana connector model

The next implementation of the SPG is the model that communicates with mono mini-
jack connectors. These small connectors are used in a wide variety of modular systems and
especially in the Eurorack modular synths, like for example the Doepfer A-100 system.
The minijack connectors connect two signals: the GND and the actual signal.

Figure 3.14 On the right, the SPG model with minijack connectors

The model shown in the middle in figure 3.14 is the SPG model that can be build into
an Eurorack modular synth. At this point two of these models have been build: one version
for the Sonology Doepfer A100 system and one version for Ruben Brovida, who
embedded the model into his own modular setup.

The third type of SPG prototype is provided with the 1/4" mono jack. This is a popular
connector in the music industry, especially for guitars and keyboards, effects, amplifiers
and mixing consoles, see figure 3.15. Due to the size of these connectors, the package of

Page 21

this model with 35 female 1/4" jack connectors mounted, is somewhat big.

 Figure 3.15

The last practical model of the SPG that is built within the timespan of the research-
project, is the version that is implemented into the RC-studio and is constructed on a
Eurocard format pcb (printed circuit board). The inputs and outputs, as well as the
power-supply, is provided by two 32-pin multi connectors - see figure 3.16.

Figure 3.16. The VC-SPG model for the RC-studio

Page 22

4 Software design
The core of the SPG project is the software and it can be split in two different main

applications. The first one is the assembly code that is running inside the microcontroller,
processing all the analogue- and digital-signals. This code running inside the Microchip
microcontroller is also known as firmware. The second software application is the Max/
Msp-patch running on the host computer, driving and programming the SPG (see figure
4.1).

The Max/Msp patch generates a stream of OSC-messages that drives, programs and
controls the SPG. These OSC-messages, explained in chapter ‘Communication’, page 43,
can be generated by any type of software, as long as the format of the OSC-message has
the correct syntax. The firmware, however, is the heart of the design and the setup and
configuration determine the main physical properties of the SPG. Choices made within the
firmware have time-related consequences and thus, have a big influence on the musical
behavior of the SPG.

Figure 4.1 Max/Msp patch and Assembly determine the properties of the SPG

4.1 Assembly- firmware
It is inevitable to explain something about the programming language Assembly. The

firmware written for the SPG consists of around 3000 lines of code - a huge part of the
projects’ development time and important parts of the properties of the SPG are
determined by this firmware and its configuration. It would be beyond the scope of this
thesis to cover the complete architecture of microcontroller and the Assembly language in
total, but a glimpse at the technology used is essential for this research project to give a
better insight and understanding.

Assembly is a low level computer programming language that is specified for certain
types of controllers. An Assembly program written for one specific device or brand, cannot
easily be re-programmed into another device due to the architecture differences between
the devices. Also the code and the structure of the program very much depends on the
architecture of the controller.

The PIC18F2523 microcontroller, an ‘enhanced flash microcontroller with 12 bit A/D
nano watt technology’ (Microchip user-manual), is an 8-bit RISC-controller10 with
powerful features. This microcontroller is, in fact, a small computer complete with inputs,

Page 23

outputs and power connections. Instead of the normal mouse and monitor, a
microcontroller has physical pins with voltages between 0 and 5V acting as inputs and
outputs. In visual aspect it does not look like a computer at all. It is a chip, an Integrated
Circuit or abbreviated as IC. It has program memory, data memory, multiple timers and
counters, communication ports and special function registers.

Writing firmware for this controller means writing the program code on bit-level, the
lowest programming level. This actually means the programmer (that would be me) has to
literally think in ‘bits’ and ‘bytes’, thinking in time slices of 20 nanoseconds or having to
realize that over 5 million steps of code will be executed in 1 second.

Another subject that has to be indicated, is the importance of the registers inside the
microcontroller. The special function registers (SFR) within the microcontroller, contain
data or information, which determines the way the microcontroller operates in realtime. At
startup or initialization, all registers are filled with data (8-bit or 16-bit words). Therefore
registers can be compared with switches that have to be set or cleared to create a certain
configuration. The main and most important register in the controller itself is the working
register called Wreg. All commands, operations and actions will be processed through this
register Wreg. Moving numbers from one place to another, adding numbers, shifting
numbers, comparing variables, (almost) nothing can be accomplished without Wreg.

Another important register is the status-register. In this status-register the actual ‘state’
of the controller can be checked after an operation or arithmetic action. For instance if two
numbers are added and the outcome is a number larger than 255 (8-bit number
maximum), the corresponding carry-bit within the status-register will be set and can then
be checked by the next instruction.

To give a rough overview, the Assembly language instructions can be divided into four
big basic categories: byte-oriented operations, bit-oriented operations, literal operations,
and control operations. Every operation or instruction consists of three operands. Some
instruction examples of the 4 different categories:

Examples of byte oriented operations / instructions:
andwf porta [AND the content of the Wreg with register porta]

incf counter [increment variable counter with 1]

Examples of bit oriented operations:
bcf porta, 1 [bit clear f // clear bit 1 of register porta]

btfss porta, 3 [bit test f and skip if set // test bit 3 of porta and skip the next
 instruction if this bit is set]

Examples of literal oriented operations / instructions:
movlw 0x00 [move literal into Wreg // move hex number 0x00 into Wreg]

Page 24

xorlw 0x2A [Xor literal with Wreg // Exclusive OR content of Wreg with
0x02A]

Examples of control instructions:
call wait [call subroutine wait]

goto write [goto subroutine write]

With regards to the design of the SPG, many reasons can be given for using Assembly
and a fast microcontroller. First of all, my familiarity is based on the usage of the
Microchip controller series, given the fact that I have designed extensively with this
technology. I’m experienced with the design of electronics in combination with the
microcontrollers running Assembly. This experience gives me the possibility to make a
better design in the time window available for this research - I do not have to learn a
complete new language.

The second reason, and the most important one, is that being able to program Assembly
is a very powerful way to maintain control over ‘time’ during operation. This means the
time elapsed in an Assembly program can easily be managed and calculated. Every
instruction only takes one or two instruction cycles (clock cycles), from which the time-
length is known. Creating some loops or equivalent actions can always be brought back to
the actual real time elapsed within that loop.

Higher level programming languages like C++, Java, Pascal or Arduino’s ‘processing’
need to be compiled with external compilers, bringing the program back (down) to
machine language. This translation of the written program with the aid of a third party
compiler is a conversion or translation in which this exact level of time control is lost.
Depending on the quality or brand of the compiler used, the actual generated machine
code can differ and so will the elapsed time of different loops and routines. When
depending on fast time-critical communication, it is important and absolutely necessary to
keep control over ‘time’ in the written code. This control can be obtained when
programming in Assembly.

The best way to explain the way Assembly works is by using an example. In the next
paragraph follows more detailed information about how the switching array can be filled
with a new preset and activated - the core activity of the SPG.

4.2 Data transfer from microcontroller to matrix
The core assembly process in this project is to drive the Analog Devices AD75019

switching array chip. This 16 x16 matrix chip is capable of switching 256 switches
simultaneously. Changing the status of these switches takes time. It takes the controller

568µsec (= 568 x 10-6 seconds) to write 256 bits from the controller output into the

Page 25

switching array. In other words, within 1 second, this switching array can jump 1700 times
between different presets (1.7kHz).

Another important process in the setup is reading the incoming opensoundcontrol
(OSC) information from the computer connected to the controller. Through external
software (for example Max/Msp or Super Collider), the controller can receive up to 32
presets, to be stored into the local memory and later to be sent to the switching array when
the sequencing-mode is active. Or the received OSC-message contains a new patch that
will be activated immediately after it has been received.

How can an eight bit controller like the 18F2523 drive the AD75019 and
simultaneously read incoming data from the web server or computer? Throughout this
research project it has become more clear that speed and timing matter. The speed of
switching between presets is an important variable when the SPG is used as a generator.
In this chapter the importance of this speed issue will be highlighted by describing the
complete process of transferring data between the controller and the switching array. This
is the most essential process of the whole generator.

Before the time related process can be explained, it is important to know how the
controller is communicating with a peripheral. Take a look at the timing diagram below,
figure 4.2. Peripherals like the AD75019 switching array do have 3 data communication
lines: data input, a clock input or shift clock (Sclk) and a storage clock (Pclk). To write a
full preset from the controller to the switching array, 256 bits have to be transferred one by
one with the aid of these 3 lines only. See also chapter 6 'SPG communication' for the
exact syntax of the data.

Every bit represents one switch within the array (1=open and 0=closed). The first bit
that will be ‘clocked’ into the array is in fact the last bit of the matrix: (x15,y15). After 256
clocks or positive edges, the first bit (x0,y0) is set into place. If all bits are in place or
‘clocked-in’ the storage-clock signal will change value. This will result into an activation of
the preset itself and all switches change to their new position simultaneously.

Figure 4.2. Timing diagram of communication (SPI, Serial Peripheral Interface)

The clock-signal, SCLK, is generated by port RC1 of the controller and switches
between 0V and 5V at a very high speed. Within the Assembly code port RC1 is set and

Page 26

reset sequentially, to generate a clock-pulse. On a rising edge, the value of the data input
SIN will be ‘clocked in’. The clock, the data and the storage clock are generated by the
assembly program, running within the controller. Port RC0 is the data output from the
controller, connected to the SIN (data input) of the array. Port RC2 is the PCLK - the
most important signal. When the PCLK is set low, the whole preset is activated.

It is now easier to look at the corresponding Assembly code that realizes this
communication. The name of the routine in the example below is called ‘WriteData’.
Within the main program of the generator, this part of the code is named a sub-routine.
This sub-routine is ‘called’ from within the main routine with the value to be sent to the
switching array stored in the variable ‘Waarde’. So, if a valid value has to be written to the
AD75019, this routine ‘WriteData’ is executed. The routine only writes 8 bits in a row,
hence the value 8 at the beginning of the code. For writing one complete preset from the
processor to the AD75019 switching array, this particular piece of code will be called 32
times (8x32=256). The flowchart on the right shows the sub-routine in graphical format.

Figure 4.3. Flowchart with the corresponding Assembly code.

During the first two instructions the counter is set to the value of eight - only 8-bits will
be transferred in this routine. First loading the Wreg with the decimal value 8 (= movlw
d’8’ // move literal into Wreg) and then moving the value of the Wreg to the variable
‘bitcnt’ (= movwf bitcnt // move content Wreg to bitcnt).

To be able to determine the value of a particular bit, it is best to just rotate (or shift) the
value 1 bit to the right (rrcf waarde // rotate right through carry f) through the carry. If the
result of this action sets the status registers carry bit, the data port RC0 can be set to one
(= bsf port,0 // bit set f). If the carry bit is cleared, port RC0 will be set to zero (= bcf
portc,0 // bit clear f). If the data pin, or port RC0 has its right value, the Sclk pin (port
RC1) will be set high and low, thus creating a rising edge. To make this clock pulse longer
in time, due to minimum values, a nop instruction is placed in between (nop = no

Page 27

operation).
The last decision in this sub-routine is to check if all 8-bits have been dealt with.

Decrement the counter value with one (bitcnt-1) and check if the resulting value is zero.
As stated before in this chapter, the time that is needed for writing the whole preset from
the controller to the switching array, can now be determined accurately by calculating
exactly how many instructions it takes. In practice, a good quality oscilloscope can also
provide precise information about the length of the whole process - receiving the OSC-
message from the computer, storing it and sending it to the switching-array.

The last signal that has to be generated in order to really activate the 256 bits, is the
Pclk (see figure 4.3). In the design of the SPG this Pclk signal is connected with port RC2
of the microcontroller (figure 4.3). After writing 256 bits, port RC2, which is normally
high, has to be cleared and set in sequence to provide the AD75019 with a falling edge. If
the falling edge is detected, the preset with all of its 256 bits is activated and the SPG
switches. Within the design of the SPG, this negative pulse on RC2 is actually one of the
most important timing related pulses. Within the Assembly code this routine is called
‘metro’.

4.3 The SPG main-routine
The heart of the assembly code of the SPG is the main-routine. This routine is actually a

loop containing jumps and calls to different sub-routines, continuously checking if
something internal or external has changed. It is a continuous process and will only stop if
the power is switched off. Also notice that the main program-loop consists of checking
exclusively the state of ‘bits’, resulting in questions that only can be answered with Yes or
No.

Consult the flowchart in figure 4.4. Starting from the top, the first process to be
checked is if new valid OSC-information is available. If the answer is no, the next status to
be checked is the manual mode. Is the manual-mode switch active? If this is not the case,
the last status to be checked is the sequence mode and if that question is also answered
with No, the whole loop starts all over again.

Figure 4.4 The SPG main-flowchart.

Page 28

If new data is available (new data received = yes), there are 3 different OSC-address
type tags to be checked. If it is a /cf message (configuration), then the status of the SPG
has to change - it has to for example start with sequencing or store new values for timing.
Should it pertain to a /st (store) message, the received patch has to be stored in the right
memory location. Lastly, if the block in the middle is dealing with a /pa message, this patch
has to immediately be made active.

The 3 light-gray circles on the top/right are an indication of the interrupt processes that
can occur. These interrupts are triggered by external processes (trigger pulses) or internal
processes (timer counters).

Page 29

4.4 External and internal interrupts
An important advantage of the microcontroller is the use of interrupts. Like in normal

life, every process can be interrupted. The question is how to handle this situation and
which next process will follow up this interrupt. Can you proceed with the same subject,
when somebody just interrupted your ‘actual action’ or do you ignore the interrupt? The
trick is to store the ’actual action’ just before you react on the interrupt and deal with it.
All these actions in a sequence within Assembly are called an ‘interrupt handling routine’.

The microcontroller has many different kinds of interrupts. There are internal- and
external-interrupts, high-priority and low-priority interrupts and all of them have to be
configured during initialization.

The design of the SPG uses a few important interrupts, which will be explained in this
paragraph. The functionality of the SPG is based upon 3 different kinds of interrupts and
they all have a high priority - they have to be taken care of right away. These interrupts do
really ’interrupt’ the main program loop. Figure 4.5 shows the block diagram of the main
routine in combination with the interrupts.

Figure 4.5 Main routine with 3 types of interrupt.

The first interrupt is the reception of new OSC-messages. When new data arrives, it has to
be processed right away. The second one is the internal timer interrupt. After a certain
amount of time, mainly used during sequencing, the timer sets an interrupt, stating the
adjusted time has passed. The third interrupt is the so called ‘interrupt on change’. If a
signal connected to a particular pin changes value from low to high (0V-5V), or high to
low (5V-0V), it will generate an interrupt. This ‘interrupt on change’ is an ideal way to
time-sync the SPG with external processes.

4.4.1 Receive OSC-message interrupt
This interrupt occurs when a new OSC-message is received and it activates the

EUSART11 RCIF flag. This flag, or bit, is set high when new valid data is received and is
waiting to be processed. The processing of the received data is done within the interrupt

Page 30

routine, after the values from the main routine are being put to stack.
As you probably know, an OSC-message is build up by three different tags, starting

with the address tag, the first thing that has to be checked within the routine is the address
tag. Is it the right value and is the data intended for the SPG? The values intended for the
SPG are: /pa, /st and /cf (see chapter OSC-communication) and all three call for different
actions within the SPG (activate patch, store patch, control SPG). As a result not only the
address-tag has to be checked, but also the linked process has to be determined. The
flowchart or graphical representation of the whole (complex) interrupt routine can be
found in appendix E.

The OSC-message ‘receive interrupt-routine’ will handle the interrupt and sets the
corresponding bits for the main routine to work with. If a /pa OSC-message has been
received, the main routine should activate the corresponding patch right away. If the /st
OSC-message is received it should store the preset at the right memory location and if the
OSC-message has a /cf address tag, the SPG will change its present state.

4.4.2 Timer interrupt
When the SPG is sequencing it makes use of the internal timer (timer0). A timer is a

16-bit register that counts every program step within the code. It actually increases its
value with ‘one’ on every instruction (cycle). When the /cf OSC-message contains a 16-bit
timer value that is the source of the sequence speed, this number will be compared with
the value of the internal timer. When both are equal an interrupt will occur and the SPG
will step to the next preset stored in its memory.

Hence sequencing with the SPG is done in sync with its internal timer and this results
in a very stable and precise timing, which for musical applications, is critical.

Also in the CV-speed mode, when the SPG is reading an external voltage to be
converted into a sequence speed, the internal timer is used. First an analogue to digital
conversion (ADC) is carried out and the result, a 12-bit number, is the basis for the timer
to generate time based interrupts. The specific code for the interrupts can be found in
appendix F.

4.4.3 Signal on change interrupt
PortB of the microcontroller has some great features and one of these features is the ‘

interrupt on change’. When one pin of portB changes its value from 0V to 5V or from 5V
to 0V, an interrupt is generated. These pins are connected to the external trigger input of
the SPG. When the external trigger signal changes value, the SPG will activate a new

Page 31

preset and write this to the audio matrix.
Take a look at figure 4.6. Since there are two different ‘signal on change’ interrupts, one

for the rising edge and one for the falling edge it is possible to have the SPG step to the
next preset on both edges, introducing modulation within the sequence when a pulse width
modulation signal is connected. The preset will be activated in different time lengths.

Figure 4.6. Example of positive- and negative edges with block and PWM.

4.5 Sequence routine
The second important routine defining the functionality of the SPG, is the sequence

routine that steps through the local stored presets and is constantly checking the status of
the received OSC-message (/cf string). The SPG can sequence based upon the internal
timer, an external control-voltage and the external trigger signal. If the external trigger is
active, which is checked within the initialization of the routine, it can switch on both edges
or only on the rising edge(see page 38). The whole sequence flowchart is shown in figure
4.7. The upper part is the initialization of the sequence routine and the lower part is the
actual sequence part.

Page 32

Figure 4.7. The sequence flow chart (version asm90)

As described in the chapter ‘SPG Features’ (page 35) the SPG can sequence up or
down through the local stored presets or the order of the sequence can be determined by
an external control voltage (cv-preset-id). If the order of the sequence is determined by the
external control voltage, there is no timing involved. If the control-voltage changes its
value, the preset linked to this value will be activated immediately.

The SPG design contains three sources that determine the timing or speed of the
sequence: the received 16-bit OSC-number as part of the /cf OSC-message, the external
control-voltage and the external trigger pulse. The number received by the /cf OSC-
message is transferred directly to the onboard timer of the processor and activated. If the
control-voltage to speed option is active, the AD-convertor measures the value of the
voltage and the resulting 12-bit number is transferred to the same onboard timer. The
external trigger does not work in combination with the onboard timer. The value change of
the trigger pulse, generates an 'interrupt on change' and this controls the speed of the
sequence.

4.6 Max/Msp Patch
To control the full functionality of the SPG, I created a software patch with Max/Msp,

Page 33

that enables the user to fully control the SPG and generate presets in many different ways.
It hosts the functionality to store many presets in special preset-banks and generate
random series, or play complete pre-defined lists of presets. As will be stated in the chapter
5 ‘Features’ (page 37), driving the SPG directly from the Max/Msp patch is very well
possible, but it has its time or speed limits, which can reveal unstable behavior, especially
at high frequencies. This is the reason why presets made within the Max/Msp patch can be
uploaded to local memory of the SPG, so no new data has to be sent back and forth every
time a preset changes; it saves time.

The red part within the layout of the Max/Msp patch is related to the uploading of
presets to local memory and it shows the controls to set the SPG in the preferred
configuration (figure 4.8).

Figure 4.8 The Max/Msp patch, linked to asm version 85.

The configuration-bits, a part of the /cf OSC-message (see page 47) are the switches to
set- or reset functions like external- or internal trigger and it enables the selection of
different control voltages. On the left side of the layout the actual matrix is located with its
inputs on top and the outputs on the right.

Below the actual matrix, presets can be stored in preset-banks. In this patch setup 6
preset-banks are created with each 32 presets. If a certain preset-bank is selected,
indicated by the big number in the middle, it is this bank which serves as the source of the
sequence. The order of the sequence is limited to up, down or pendulum and there is also
an option to have the sequence-order determined by a list.

On the right from the matrix, the control to start/stop the OSC-sequence and change
speed and preset-order.

On the right side of the layout another matrix is located. This matrix shows the received

Page 34

OSC-messages from the SPG itself and provides the user with accurate feedback. The
number-boxes underneath the feedback matrix show the content of the actual registers
within the microcontroller. During the design and test-phase it’s very practical to have this
information available, but for the future user it is optional to use. A more detailed
description on the Max/Msp patch can be found in Appendix G.

The presets are stored in the designated preset banks. In the right corner of the patch,
the numbers can be edited to generate a list of preset-sequences. The core of the Max/Msp
patch is based on the standard matrix-control object. This object generates row- and
column data with the corresponding value of the cell. If a cell is selected, the output
generates [column-number], [row-number], [0 if off and 1 if on]. This series of three
numbers is converted into the right OSC-message pointing at the right cell within the
16x16 matrix.

To convert the standard matrix-control output to the right OSC-format, some complex
steps have to be taken to achieve this conversion (see figure 4.9).

figure 4.9 Max/Msp standard matrix object with conversion.

Page 35

5 VC-SPG Features
The main basic structure of the VC-SPG is described in chapter 2 and the more

technical considerations are described in the chapters 3 and 4. In this section the focus will
be on the features of the SPG. How does the sequence through presets actually work and
what are the specifications of the external control signals? What about the sound quality of
the SPG and are clicks audible when all 256 switches change position simultaneously?

5.1 Initial startup
 Initially the SPG should be connected to the computer with a standard network-cable

and it has to be connected to the power (-12V, +12V, +5V and GND). The Max/Msp patch
that drives the VC-SPG generates the 3 main OSC-messages to drive and upload presets.
Due to the large number of matrix options it’s a good habit to keep a concise and clear
labelling approach.

If all connections are made, the patching can start. Clicking on the crossing in the
matrix-object will change the colour from gray to yellow, indicating the connection is now
active. By selecting multiple cross-points and thus making multiple connections between
inputs and outputs of different modules, sounds can be generated. If the preset, or patch
sounds like it needs to be stored, the standard preset object located in the left down-corner
of the Max/Msp patch can be used. A preset can be stored by Shift-Clicking a location.
The small ‘dot’ will change colour from gray to green, indicating the preset is stored (see
page 32).

5.2 Audio in’s and out’s
One of the main features of the interface is the input-adding function, which is an

important part of the design. By selecting multiple inputs of the matrix to be routed to the
same output, the real sum, or mix, of the signal will be available at the output. The
summation of the signals is obtained with the use of Opamps12 configured in a double
inverting-amplifier setup. On the left side of figure 5.1 the input X0 is selected to be routed
to output Y0 (the blue dot). Because both input and output of the matrix are buffered with
an opamp circuit configured to be an inverting amplifier, connecting them together with
the matrix will create a series connection of two independent inverting-amplifiers. A twice
inverted signal equals a not inverted signal. The output result would be: -Y0 = -X0, or
Y0=X0

Page 36

Figure 5.1. Opamp configuration with X0 routed to Y0 (blue dot).

Figure 5.2. Opamp configuration with X0 and X1 routed to Y0(Y0=X1+X2).

If two inputs are routed to the same output a circuit configuration like figure 5.2 will
appear. If n inputs are selected to be routed to one output it will always be a perfect
summation of cv or audio signals. If multiple input signals can be routed to multiple
outputs, the inputs signals also can be split.

When splitting one input-signal to be routed to multiple outputs, the amplitude of the
original signal will decrease due to the opamp-design - improvement is still possible. In
some applications this can be an interesting feature, but if the amplitude of the control-
voltage drives the pitch of an oscillator, this signals a weak point of the design and
something that has to be improved. The decrease of the amplitude when an input is split
into multiple outputs is caused by the design of the opamp-circuits around the matrix itself
(see figure 5.3). The moment an input signal is split, the two (or more) negative inputs of
the operational amplifier are ‘tied’ to one point. The output of the opamp will decrease in
amplitude.

Figure 5.3. The split of one input to multiple outputs.

The printed circuit board (see appendix H is designed to also have access directly to the
ins and outs of the AD75019 chip without the addition of the operational amplifiers. For
some applications that do not require opamps in the circuit, this can prove to be a better
solution.

Page 37

5.3 Sequence with the SPG
What does sequencing mean for an interface that can store presets? Sequencing with

the SPG means activating presets one after another, forward, backward or CV- dependent,
with or without a controlled time-delay in between. This time-delay is determined by
external processes and is variable. In sequence-mode the SPG can be driven and
controlled by OSC-messages received from the host-computer or it can be controlled with
multiple types of external analogue control signals. When it is directly driven from the
computer by means of OSC-messages, complex series of sequences can be generated.
Figure 5.4 illustrates the different sequence modes in which the SPG can operate and in
the following section the different sequence modes will be discussed.

Figure 5.4. Different sequence modes: with computer, manual or ext. signals.

5.3.1 OSC as sequence source
The most complex series of sequencing through presets can be realized with the host-

computer connected and driving the SPG directly. With software like Max/Msp or
SuperCollider extensive series and patterns can be generated, but this approach also has a
minor down-side. The maximum sequence speed limit is determined by the combination of
software used, the network-speed and the receiving speed of the microcontroller in
combination with the X-port.

The process of writing a set of 256 bits (= 256 switches simultaneously) from the
processor to the switch array takes time. It is this time that determines the maximum speed

at which the SPG can sequence through presets. It takes 568µsec (= 568 x 10-6 seconds)
to write a whole string from the processor to the switch-array. This means the maximum
frequency at which the SPG can sequence is 1.76kHz. The limitation of the speed is
caused by the speed of the processor and not by the switch-array.

This maximum speed can’t be achieved with the host-computer as the source, simply

Page 38

because of the fact that the microcontroller simultaneously has to process the incoming
OSC-messages and that process consumes time. This is also the main reason why
sequencing through presets in local memory is much faster - the data does not have to be
transferred anymore, which results in a considerable increase of sequence-speed.

In order to gain speed with the sequence and to reach these potentially interesting
audio-rates, the best and fastest option is to sequence through the presets that are locally
stored.

Stepping through these presets can be done with multiple settings (see figure 5.4). From
the host-computer the sequence can be started/stopped by sending the /cf OSC-message
(page 43). This OSC-message also contains a 16-bit number that is transferred into the
local timer of the microcontroller.

When the sequence ‘OSC-timing’ starts, the time-base of this sequence is created by
this internal timer which produces a very stable sequence. The internal microcontroller
timer that is used to create this timing, has a resolution of 16-bits (=65536 values) which is
extremely precise. If the speed of the sequence has to be adjusted during operation, this
can be executed by sending a single /cf OSC-messages and store a new number into the
internal timer. The sequence speed will change immediately. The maximum time t-max is
around 2 seconds and the minimum time t-min is set to be 568 µsec (= minimum time the
microcontroller needs to write all 256 bits).

Figure 5.5. OSC-timing preset sequence.

5.3.2 External triggers
Instead of using the internal timer and the number received by OSC to step through the

locally stored presets, the master-clock for the sequence can also be abstracted from an
external pulse or trigger (see figure 5.4). This feature makes the SPG exceptionally
interesting to be applied in an analogue setup because it can be part of the timing or sync-
pulse of the studio itself. Another feature is the possibility to switch between two different
trigger modes: switch on the rising edge only or switch on both the negative- and positive-
edge of the external trigger. This will create duration differences between the sequential
presets and it will double the sequencing speed, as shown in figure 5.6. When the SPG
only steps to the next preset triggered by the rising edge (0V-5V), there’s no pulse width

Page 39

modulation (pwm) possible between the presets.

Figure 5.6. External trigger with preset order on only the rising edge and both rising and falling edge.

Notice the difference in timing. When the external trigger only switches on the rising
edge, the time slices between the presets are regular - of course this depends on the
symmetry of the used trigger signal. If the switching is triggered by both the positive and
the falling edge, the time between the presets can be modulated by using Pulse Width
Modulation (PWM).

5.3.3 External Control voltages
Besides the external trigger, the SPG can also be controlled and adjusted by two

external control-voltages, both adjusting different parameters within the sequencing
process. The CV-speed input changes the speed of the sequence that can vary between
568uS (absolute maximum speed) and around 2 seconds. The other control voltage input
is linked to the preset-id.

5.3.3 Control-voltage to speed
The internal analog-digital convertor (ADC) of the SPG has a 12-bit resolution.

Incoming voltages between 0V and 5V are converted into numbers between 0 and 4095.
These numbers are used to be the source of the timer that controls the sequence speed.
When the control-voltage slowly increases from 0V to 5V, the sequence speed will increase
at the same rate - see figure 5.7.

Figure 5.7. Control voltage to sequence speed.

Page 40

When the SPG CV-speed input is connected to an analogue signal, the speed of the
sequence through presets will be modulated accordingly. The maximum speed that can be
reached is 1,7kHz, which corresponds with the maximum input voltage (5V) at the CV-
input.

5.3.4 Control-voltage to preset-id
To introduce a less predictable and more musically interesting sequence-character (not

only sequencing up and down) the possibility of converting a control-voltage to preset-id is
introduced. When the cv-speed changes value, also the active preset-id will change value.

The AD-convertor has a resolution of 12-bit and this results into a number between 0
and 4096. These numbers have to be re-mapped to preset-id numbers that can vary
between 1 and maximum 32 (only 32 presets can be stored in local memory).

To make this feature feasible and musically interesting, a way of re-mapping the
resolution is implemented. If for example only 5 presets are stored in local memory and the
cv-preset-id results into numbers between 1 and 32, chances are, it will never reach or
activate the right preset. In order to avoid this issue a choice can be made concerning the
resolution of the control-voltage. When the SPG is programmed and controlled with the /
cf OSC-message, a number N can be sent and stored (see Max/Msp patch explanation).
This number, first of all, defines the amount of presets within the sequence and therefore
sets the maximum, but it also sets the range of the cv-preset - the resolution. Please refer to
figure 5.8.

Figure 5.8. Representation of the 5 different resolutions used (N=1,3,7,15,31).

Page 41

If the number N = < 3, the control voltage (0V-5V) will solely be mapped to these 3
presets - a resolution of 2-bit. An increasing value for N, results in a higher resolution,
with a maximum of 32.

5.4 Audible clicks
If an audio-signal on one of the inputs is routed to an output, and the output itself is

connected to a speaker or another audio device, the sudden switch from one input signal to
another input signal can cause ‘clicks’, or unwanted pulses (discontinuities). This
phenomenon is caused by the abrupt change of the value the audio-signal has at the
moment of the switch. Switching audio-signals without an audible click is only possible if
the moment of switching is in-sync with the zero-crossing of the signal or when the two
input signals have exactly the same amplitude and slope (speed of increase/decrease).

Furthermore, this aspect constitutes an integral sonic aspect of the system. As such the
design considers this immediate switching as a distinctive feature rather than drawback of
the system.

Figure 5.9. Example of a switch from signal 1 to signal 2.

As shown in figure 5.9, if signal 1 is suddenly changed to signal 2, the amplitude at that
moment will change from positive to negative, introducing a discontinuity in the signal - in
the example it actually will move the speaker backwards, resulting in an audible click or
pulse.

The clicks can be avoided if the audio-signals and the routing within a preset are not
switched but left untouched. Switching control voltages, driving VCO’s or other modules
with a CV-input, will (in most cases) not result in clicks. Another option would be to
introduce gate’s or a system with a fast fade-out and fade-in - all of these solutions will also
alter the audible result and maybe even create interesting material.

5.5 SPG Switching quality
To investigate the quality of the switch-array in combination with the firmware driving

the switching-process, a test with a spectrum-analyzer13 was carried out. By connecting
+5V to input X0 and sequence between two presets that connect and disconnect X0 to Y0

Page 42

(so only one connection is switching ON and OFF), a regular square wave is generated on
output Y0. By using a spectrum-analyzer connected to output Y0, the harmonics of the
square-wave can be detected, which are an indication of the quality of the signal. A perfect
rectangular wave-shape consists only of odd-harmonics - a summation of the fundamental
frequency and the odd harmonics (3,5,7,9,…). If there is some imperfection or irregularity
present in the signal, also even harmonics will be visible, indicating a lesser perfect signal.

In our measurement with a spectrum analyzer, only odd-harmonics were visible at
lower and higher frequencies. This measurement indicates that the SPG has a very precise
timing, which is an important feature considering it is used as a compositional tool or
musical instrument.

Page 43

6 SPG communication
Within the SPG the main communication is executed through the OSC-messages

between computer and VC-SPG. OSC is using the UDP protocol as a carrier throughout
the internet but also a robust and well known protocol like RS-232 for the data transfers
between the processor and the X-port. The internal IC’s, or Integrated Circuits,
communicate by means of Serial Peripheral Interface (SPI) to transfer data back and
forth. In this chapter the focus will be put on the different ways of communication and the
tools and various protocols that are used within the VC-SPG - see figure 6.1.

Figure 6.1. All used data protocols in the SPG.

6.1 OpenSoundControl (OSC)
Open Sound Control (OSC) is a protocol for communication among computers, sound

synthesizers, and other multimedia devices that are optimized for modern networking
technology. Within the design of the SPG only OSC-messages are used to communicate
with the external computer. An OSC-message consists of three parts: an OSC address-tag,
an OSC type-tag and the OSC argument(s). Figure 6.2 shows the generic OSC-message
that is used for driving the matrix.

Figure 6.2 SPG OSC-message configuration

All OSC-communication is achieved with blocks of 4 bytes (1 byte = 8-bits) and the
characters use the standard ASCII coding14 for the definition of the right symbol. In figure
2 you will notice the extra ‘zero’ after the address tag ‘/pa0’. This zero acts as a separator
between the address-tag and the type-tag and it completes the complete data-string to a
multiple of 4-bytes. After the definition of the type-tag consisting of nine 16-bit integers (9
x i), two zero’s are added again to complete the multiple of 4 and to accomplish the
separation between the type-tag and the OSC-arguments. Both the /pa and the /st strings

Page 44

contain a total of 9 integers [v0 - v8]. For the communication with the SPG, the address-
tag (/pa in figure2) can have three different values:

/pa : this address-tag is used if the SPG has to activate the new received value instantly.
‘Pa’ is an abbreviation for ‘Patch’.
/st : for the storage of a preset the OSC-message should begin with /st (storage).
/cf : this short OSC-message, consisting only of one OSC-argument is used to
configure and control the SPG.

Page 45

6.2 Writing to the audio matrix
To be able to write different matrix presets to the audio-matrix, it is necessary to write

all 256 bits every time the presets changes in order to obtain stable behavior. This
corresponds to the setup and the design philosophy of the Analog Devices AD75019
matrix chip. The Analog Devices AD75019 has 256 switches onboard that all need a
specific value before the new status can be activated, so all 256 bits have to be transferred
every time a new preset is created.

Figure 6.3 shows the build-up of the content of the arguments used to transfer presets
from the host-computer to the SPG or vice versa. The first byte of the OSC-message,
byte1, is a 32-bit integer and it holds the matrix setting for two rows: X0/Y0 to X15/Y1.
The next byte (byte2) holds the next two rows: X0/Y2 to X15/Y3. Notice the ‘Yx’ is
increasing and that every byte always contains twice the settings from X0-X15. The first
byte of the OSC-message, byte0, contains the preset-id and has still multiple bits assigned
for later use.

Figure 6.3. Bit representation of the matrix

6.2.1 The patch OSC-message (/pa)
/pa [byte 0] [byte 1] … [byte 8]
The OSC-message starting with ‘/pa’ (patch) is directly activated within the SPG when

it is received. It will instantly switch On/Off the corresponding switches in the matrix and
activate the preset. The first byte [byte0] is an extra byte which does not contain switch
information, but it can hold information to configure the SPG. Since assembly version
v85, [byte0] is empty for the /pa string, it offers place for future data to be stored - [byte1]
to [byte8] represent the 256 switches in the matrix. Check figure 3.

Page 46

Example 1
If you want to switch ON the X0 and Y0, you have to set the first bit of [byte1] to 1.

This is switch X0/Y0. The last bit of [byte1] represents X15/Y1. See figure 4

Figure 6.4 Switch ON X0/Y0

Example 2
Switching on only Y15/X15 (this is the last bit in the row of in total 256 bits):

Figure 6.5 Switch ON X15/Y15

Example 3
If you want to switch OFF all the connections of the matrix, you have to send all zero’s

and all the matrix connections will be closed: /pa 0 0 0 0 0 0 0 0 0

6.2.2 Store OSC-message (/st)
/st [byte 0] [byte 1] … [byte 8]
If the presets send to the SPG have to be stored in local-memory for later use without

the computer being connected, the OSC-message should start with the address-tag ‘/
st’ (store). If the SPG receives the OSC-message with this address-tag, the preset attached
will be stored in local-memory at the location indicated by the preset-id in [byte0]. The
first byte [byte0] also contains data that determines the amount (N) of presets that will be
part of the sequence. The remaining two bytes do not have a purpose (yet) and can be
used for future development ideas

Figure 6.6 Storage OSC-message

Like the /pa message, [byte1] to [byte8] contain matrix switch information - see figure
6.4.

Page 47

6.2.3 Configuration OSC-message (/cf)
/cf [byte0]
The ‘/cf’ or configuration is a single byte string and contains data to change settings or

configure the mode of the SPG. The fist versions and prototypes were supported by
physical external switches to start/stop the sequence, or to make a choice between
different timer sources. Since assembly version v85, the switches can still be used, but the
configuration byte can ‘set’ or ‘reset’ the same functions. It can actually override the switch
settings.

Figure 6.7 Configuration OSC-message

Figure 7 shows the setup of the one data byte [byte0] which defines the configuration.
The 8-bits below b7 - b0, also called the LSB bits or Least Significant Bits, contain the
switch values. The switch values are explained in more detail in the quick reference. The
16-bits in the middle contain the timer value. This value determines the sequence speed
when the timing source is set to OSC. The 8-bits on the left (MSB or Most Significant
Bits) contain the value N and it sets the amount of presets of a sequence.

6.3 SPG and network communication
The communication between the microcontroller inside the SPG and the internet is

controlled by the embedded web server, called the Xport (see page 14 for more details
about this component). The protocol (or carrier) that is used to transfer the OSC-data
from the sender to the receiver is called UDP (User Datagram Protocol).

The UDP protocol is one of the most used protocols on the internet, because it is
specially designed to transfer data at high speeds. Therefore it is mainly used for video-
conferencing, phones and online gaming - applications where a fast reaction-time is
important. With UDP there is no control mechanism that will check if all the data has
arrived, because the loss of one package does not really influence the process that much.
The TCP/IP protocol, mainly used for communication between websites, checks if every
package has arrived in order to show a complete website and indicate an error otherwise.

Page 48

6.4 SPI serial protocol
The language that is used to communicate between devices or peripherals within

electronics circuits is called SPI , or Serial Peripheral Interface. The communication
between the audio-matrix switch array and the microcontroller is SPI based. By means of
three different signals, the data is transferred from the source (the microcontroller) to its
destination (the switching array). The first signal is the Clock. A clock signal provides the
timing and the trigger to start and ‘do’ an action. The second signal is the data line. Every
time the clock transitions from low to high, the value of the data line is being ‘clocked in’.
If all data-bits have been clocked in, the third signal, the Shift Clock, will activate the new
received value.

 In the chapter Software design, page 24 an example is given how the SPI protocol is
used to transfer an 8-bit byte from the microcontroller to the audio switching matrix.

6.5 RS-232 serial protocol
RS-232 is an old communication protocol, dating from the time computers were not yet

part of our daily life and, at this point, is still in use today. RS-232 was introduced in 1960
by the Electronic Industries Association as a Recommended Standard and being revised
over the years, it is still one of the most common communications protocols used. The
data-transfers between the microcontroller and the Xport within the SPG uses the RS-232
protocol. Even today all modern computer boards (Arduino, RaspBerryPie, BeagleBone,
Teensy etc), use RS-232 to communicate.

Page 49

7 Practical applications and roles
Within this section the focus will be on the practical applications of the SPG and the

roles that it plays in these applications. Since the design and production of the SPG
interface, it has become more and more clear that the different roles the interface plays and
the applications for which it is used are more diverse than I initially thought. To be able to
drive 256 switches at once at high or low speeds, driven and triggered by external signals,
offers many possibilities for a variety of musical and artistic applications.

The SPG has already been used by several students and professionals during this
research and they provided me with very useful feedback of which some is already
implemented in the current design. In the first week of November 2016 I initiated a ‘SPG-
workshop’, that enabled different students to practically work with the interface and share
experiences. During this workshop we discussed the diversity of the possible application
fields and practical applications, shown below in figure 7.1.

Figure 7.1. SPG application diagram.

7.1 VC-SPG roles
The VC-SPG offers the possibility to change the position of 256 switches in a matrix of

16 inputs by 16 outputs at once at high speeds. As we will see it is a very powerful
instrument for many applications. The role of the VC-SPG within these applications, could
be divided in a few categories.

The first role of the SPG is the functionality of ‘a programmable routing device’ with
memory locations: changing the routing of signals with the computer and create unique
signal-paths for different situations or applications is the most common feature that is used
in the practical examples.

The second role of the SPG is the one of a generator. Since the SPG can switch so fast
that the resulting signal enters the audio-domain, it becomes a generator that is capable of
generating and modulating audio and control voltages. And as generator and modulator,
the application field of the SPG expands.

The third role is the remote signal routing possibility. Since the SPG uses the ethernet
cable and UDP protocol for its control it can be directly operated over a local network or

Page 50

the internet. Therefore the SPG can be used to control processes, which are on the other
side of the globe, or next door - purely by using the internet infrastructure. It therefore can
be an effective tool for remote controlled instruments, studios or interactive installations. It
can even add more functionality for Distance Learning (DL).

Figure 7.2 Table of applications and roles.

Page 51

7.2 The programmable routing device
The first application and role is the one of the ‘programmable routing device’ for

physical connections or signal-paths - this was the initial idea and motivation to develop
the SPG. It can store up to 32 presets (32 x 256 switch positions) in local memory. A
typical application is the analogue studio: the physical connections can be stored and re-
called when needed. Switching the studio-setup to be ready for a next job or new
soundscape becomes as simple as the push of one button.

At this moment one SPG-model is designed for the use in euro-rack modular
synthesizer systems and has one physical switch which activates or de-activates the
manual-mode. When the manual-mode is selected , the 'up' and 'down' push-buttons can
be used to recall the desired preset. Visual feedback is provided with a simple setup of 5
led's showing the 5-bit representation of the active preset-id. Figure 7.3 shows the SPG-
model that is embedded in a Doepfer A-100 system.

The amount of memory available in the SPG is not that big, only 32 locations, but so far
this seems to be more than enough for the applications that it has been used in. In case the
32 memory locations are not enough the memory can be updated very fast (in about
20mS) by uploading 32 new presets from the computer with OSC-messages. In future
developments of the SPG an expansion of the memory, by embedding an extra memory
chip, is not that complex and is absolutely feasible.

Figure 7.3. SPG model embedded in Doepfer A-100 system

7.2.1 Signal routing and automation
An obvious application of the SPG is the one of signal-routing. Looking at the SPG

from a more musical point of view, switching the routing of multiple guitar pedals can be a
really interesting application. Guitar players generally use a lot of effect pedals to
condition, modify and tweak their guitar-sound to be a perfect sound for that particular
song. In normal use, these guitar pedals are all connected in series and in a certain static
order. The output of the first pedal is connected to the input of the second one, so creating

Page 52

a serial connection.
Of course there are also combined effect pedals, into which the user can program the

combination sounds as well as the complete routing and save it in a preset. The downside
of these digital-pedals (in general) is the sound quality. The sound-quality that is
produced by these digital multi-effect processors is somehow ‘thin’ and very digital - at
least that’s the opinion of most guitar players.

If good quality pedals (mostly rich sounding analog effects) can be combined and re-
connected through a matrix like the SPG, sounds can be programmed and re-called
without the loss of the good audio quality. A multi-effect pedal can be created from these
special pedals the guitar player already has. Even feedback loops can be part of the
routing, introducing new areas of sounds in many ways. It is also possible to change the
order of the pedals, which really influences the sound.

Since the SPG also has an external trigger input, the sounds of the guitar can even be
changed by some external sequence for example, creating interesting musical possibilities,
especially for the guitar player.

Figure 7.4. Example of the guitar pedal setup.

7.2.2 Live performance tool
In the situation of a live performance, the VT-SPG can be a practical tool to change

presets between or during different pieces, e.g. the guitar pedal setup. When a musician
plays a modular-synth for example, re-patching the cords during a song is something that
will not happen because the risk of making an error is too high. When the patch-cords are
routed through the SPG, it is easy to jump to the next composition and change cables by
selecting a next preset.

Another interesting application would be to introduce the element of surprise within an
electro acoustic ensemble while playing live. Imagine multiple musicians all having a SPG
embedded in their own setup and influencing each others routing. This re-routing of
signals can be part of a game-performance setup as well.

Page 53

7.2.3 Remote Controlled Studio (RC-studio)
The RC-studio, already referred to in the pre-research section (see page 6), is also a

practical application of the SPG and actually the original starting point of this research
project. Within the RC-studio all audio and cv signals can be routed to all modules within
the studio setup. Feedback loops can be made and complete lists of presets can be played
back.

7.3 Audio and CV generator
One of the first devices added to the test-setup of the project and what revealed to be a

powerful application of the SPG was a box consisting of 10 potentiometers (figure 7.5). All
of these 10 pot’s are connected between +5V and GND and are thus able to generate 10
different DC control-voltages between 0 and 5V. If these potentiometer outputs are
connected to the first 10 inputs (X0-X9) of the SPG and the uploaded presets will
sequentially connect one input to output Y0, a wave-shape will occur shown in figure 7.5.
The frequency of the wave-shape depends on the speed of the sequence.

Figure 7.5. 10-channel potentiometer-box and the possible resulting wave-shape on Y0

Due to the summing-opamps, which are added to the inputs and the outputs of the SPG
(see page 35), multiple signals routed to one output will be summed. If for example
multiple inputs have dc-values, the output is a perfect summation of these dc-values. This
application makes the SPG an interesting generator for driving miscellaneous modules in
any analogue studio.

The generator role or function is also interesting if the connected signals all have
different frequencies or AC-values. The summation signal that occurs on the different
outputs of the SPG are modulated in the sequence speed of the generator, resulting in
complex and interesting sounding audio-signals.

Another interesting application is the use of the 'control voltage to preset-id' input being
connected to one of the SPG outputs. As such, making a loop, nice unpredictable
generator patterns can be the result, especially if the SPG is part of a feedback system in
an analogue studio setup.

7.4 Remote signal routing

Page 54

A relative new phenomenon, which is getting more popular in the world of education,
is the possibility to use the internet to have teachers teach classes over long distances - you
can call it “super-skype”. A group of students in New York (for example), can follow
lessons given by a teacher somewhere in Europe or vice versa. The fast internet
connections make this option feasible and the quality and speed of the connections are
continuously improving. The Royal Conservatoire in Den Haag is using amongst other
software packages, the LoLa (Low Latency) system15 which enables musicians play
together with the aid of the internet.

At this point there are many different applications to consider for the SPG. Since the
SPG uses the internet as its main communication channel, sending and receiving OSC-
messages by means of UDP, it could well be executed that during performance or
distance-playing the performer can start or stop certain processes on the other side of the
line. If the SPG is operating in combination with the Ipson CV to OSC- and OSC to CV-
boards16, users on both ends can be of great influence to each others artistic process.

Figure 7.6 Possible distance learning setup

Page 55

8 Musical and artistic results
Although I am an experienced designer of sensor based electronic-instruments, this

particular research-project resulted in more than just a new musical-interface. It provided
me with better insides of electronic music in general and the philosophy behind it. I’ve
grown to be increasingly inspired by the enormous amount of sound creation possibilities.
And I now understand the addictive force modular synthesizers have, when exploring the
modular world.

Furthermore, I realize that the VC-SPG can be a great instrument for all kind of
disciplines. The results for this project at this point can therefore be divided in two
different sections: my personal experiences and experiments and the musical and artistic
results created by different users during the last year.

8.1 My personal results
To be a student within the institute where I have been working at for many years,

revealed new aspects and insights in my line of work. The weekly master-circle gatherings
for Sonology, where all students (including me) had to share their work-progress, was an
inspiring experience. It seems that when you are working on a project like a master
research project, suddenly the work becomes more important, simply because you have to
document the whole research and present it to an audience. However, that particular part
of my work did not really change - I have developed a lot of new technology already and I
documented this as good as possible.

The lessons I followed in the Sonology analogue studio Bea-5 broadened my view on
the studio itself and gave me deeper insight in the importance of all separate modules
installed in that studio. I used to be the technician working behind the racks, soldering and
repairing electronics, now it was explained to me how to apply this technology in order
create electronic music.

One of the first lessons, creating a pattern of tones with random pitches, is the one
setup I applied in my experiments with the Doepfer A-100 system, where one SPG is
embedded in the modular synth (see figure 8.1).

Page 56

Figure 8.1 The S&H patch creating random pitched tones.

The noise as input for the Sample and Hold module generates random DC-values
every time the S&H is triggered by the connected pulse. These random DC-values,
connected to the frequency input of a Voltage Controlled Oscillator (VCO) produce tones
with random pitches. In combination with an ADSR (Attack, Sustain, Decay and Release)
envelope generator and a Voltage Controlled Amplifier (VCA), the amplitude curve of
these tones can be modified (see page 53 for an explanation). If these tones also run
through a voltage controlled filter (VCF) and a spring reverb, the audio results are, for me
at least, very impressive.

The fundamental ‘Sample & Hold’ setup shown in figure 8.1 is reproduced with the
SPG in a Doepfer A-100 system and fully controlled by the Max/Msp patch - see figure
8.2. All of the control-voltages are sequentially rerouted by the SPG and connected to
different signal sources or VCO’s. This creates constant changing control voltages, which
results into a new layer of sounds. Of course all the existing knobs, can still be manually
controlled and played with. Some audio samples of this experiments can be listened to at
the links below. In the second sound example the ‘control voltage to sequence speed’ can
clearly be heard.

1. https://soundcloud.com/user-520335425/a100_exp1
2. https://soundcloud.com/user-520335425/a100-exp2

https://soundcloud.com/user-520335425/a100_exp1
https://soundcloud.com/user-520335425/a100-exp2

Page 57

Figure 8.2. On the left the Doepfer A-100 system with the VT-SPG build in and on the right, the actual Max/Msp
patch.

8.2 Artistic results
As mentioned before I have organized a workshop of 4 days in which I have invited

students to explore, challenge and use the SPG in their own proposed way. Furthermore I
have asked some teachers to use and reflect upon the SPG. The SPG has been used is
different ways and played different roles in their music production. The students and
teachers shared their findings and experiences in diverse forms. I have received music,
code, video and writing. In this section I will share some of the results.

Ruben Brovida (Sonology Ba Alumni, graduated in 2016)
The first musician that shared his experience with the SPG was Ruben Brovida, a

graduated Sonology student. He really wanted to join the workshop and provided me with
very useful comments and interesting audio-examples. Ruben is the owner of a modular
synthesizer setup and he was really eager to start experimenting with the SPG.

Ruben: “The use of the SPG allows a different workflow both in the studio and in the live performances.
The interface stores patches as drawings do, but you can very quickly recall them, allowing the user to keep
developing and building up his/her own collection of patches, evolving them and saving them.

Aside from the recall features, the sequencing possibilities offered by the matrix, are interesting
composition-tools, pointing at different directions in reference to the traditional patching. Working with a
digital representation of the matrix also gives a different perspective on the possibilities offered by the
modular system itself, showing new possible relationships between audio and control-voltages. Because of
the hybrid approach, live performances (using modular synthesizers) can be prepared in a completely
different way. Few modular artists change their patch on stage and for many different reasons usually
sticking to only one pre-prepared patch for each set. The SPG allows to store 32 patches, so that user can
even on stage quickly swap them and push the set in much less static directions.”

Ruben has revealed multiple functions for the SPG within his experiments. Recalling
and storing presets, using the switching of the SPG as a compositional tool and he noticed
that the SPG shows less separation between audio and control signals. Another

Page 58

observation Ruben made is that by connecting the ins and outs of the modules to the SPG,
the synthesizer has a different graphical representation of the setup, which allows a
different workflow and possible new compositional ideas.

Some sound samples Ruben shared:
https://soundcloud.com/user-520335425/feedbackpatch-ruben-brovida

https://soundcloud.com/user-520335425/matrixmixerlexday1-ruben-brovida

Max van der Wal (Sonology student Ba 3rd year)
Max shared some musical results of his experiments in analogue studio Bea-5 and he

also documented his experience and workflow using the SPG.

Max van de Wal: “The first thing that I noticed was that the workflow was very different. It takes longer
to set up but once that has been taken care of there is more freedom. I made several patches that I would
have never made simply because of the fact that it only took a push of a button, therefore less thinking in
advance was required and more time was left for experimentation. This possibly was more useful to me than
the actual sequencing through the patches.

The sequencing I did by receiving a trigger straight out of the sound that was put out. Every time the
voltage crossed a certain threshold an impulse was created. This impulse went into a variable scaler. This is a
device which takes in a certain amount of triggers and outputs a trigger when the chosen threshold is
received. Due to this, I could more or less decide how fast the changes would be, but it would always be
different because the decision making would depend completely on the sound itself. This trigger would go
into a sample and hold device that would give a constant output. This output would go into the preset-input
in the matrix and thus make a new preset active accordingly. It took me quite a while to get this to work
perfectly to my liking because of the way the voltage was scaled in the analogue studio. In the end, I made it
work by doubling the voltage of what would go into the sample and hold. “MatriLex 4” and “MatriLex 5”
are two phrases that are taken from the moment that the whole system worked perfectly”.

Max used the audio result of the SPG for the 'control-voltage to preset-id input',
creating feedback in his setup, which generated interesting results. He shared some short
recordings.

https://soundcloud.com/user-520335425/matrilex-4
https://soundcloud.com/user-520335425/matrilex-5

Sabina Ahn (Artscience 2nd year master)
An art installation and, from a technical point of view, more practical approach of the

use of the SPG is done by Sabina Ahn. The SPG is used in her art-work to route different
source signals to different speakers — she uses the SPG as signal-router. Her graduation
work (she will be the first one to use the SPG for a graduation project) consists of 10 big

https://soundcloud.com/user-520335425/feedbackpatch-ruben-brovida
https://soundcloud.com/user-520335425/matrixmixerlexday1-ruben-brovida
https://soundcloud.com/user-520335425/matrilex-4
https://soundcloud.com/user-520335425/matrilex-5

Page 59

columns filled with mud full of living organisms. Every column has an oscillator, a speaker
and a bright led-light linked to it. These columns generate the energy for her electronic
analogue oscillators and the SPG is applied to change the routing and create variations in
the direction and intensity of the generated audio.

Sabina is traveling around the world with her work and the VC-SPG she uses travels
along with her and she definitely wants to own one. She shared a series of beautiful photos
and a link to a video of her work, titled ’Sonomatter’ — see some impressions in figure 9.3.

Video link: https://vimeo.com/199717824

 Figure 8.3 Impression of the setup of Sabine Ahn. In the left upper corner the SPG used for routing the different
signals.

Justin Bennet (Sonology teaching staff and Alumni)
One of the first SPG testers was Justin Bennet. Justin is a member of the Sonology

teaching staff and as an audio-visual artist he is always interested in new developments.
He is also an owner of an EMS Synthi synthesizer and he was really curious what the
effect of the SPG would be when the two were combined. He shared some findings:

Justin Bennett: “Firstly I adapted the Max patch provided by Lex so that I could prepare patches that
were visually identical to an analogue EMS patch. The EMS matrix has inputs on the vertical Y axis instead
of the X axis. Once I had done this I was able to program some patches and make a short demo. I treated
each patch as if it were a "note" in a sequence and used the SPG as a sequencer. This was interesting because
it enabled me to have a quickly changing but repetitive sequence where I could play the controls of the
synthesizer to change the timbre and tuning. Because the patch-pin matrix works parallel to the SPG, I was
still able to patch the EMS joystick to control various aspects of the sound.

What was interesting to note in all of these examples was the effect that the non-buffered patching of the
SPG had. As more connections are made from an input to various outputs, the signal spread over the outputs

https://vimeo.com/199717824

Page 60

is reduced in amplitude. When I was adding layers of feedback, this had a useful effect, slowly reducing the
overall amplitude so that the volume was kept under control. However, when the Difas was used to route
voltages to change pitches for instance, adding more outputs reduced the control voltages and changed the
resulting pitches. I think that when using a SPG in a control-voltage based studio (rather than just patching
signal paths) buffering to keep the output voltages identical to the inputs will be essential. The "clicks"
created by patching signals at an arbitrary moment I exploited as musical material, but I can see that for
some applications a very short cross-fade would be more suitable!”

Justin also shared some recordings made with his EMS VCS3 synth, which can be
listened to following this link: https://soundcloud.com/user-520335425/synthi-spg-01-edit

He uses the SPG to rhythmically switch between the patches as a core of his
composition. He also clearly notes that if more inputs are split to several outputs, the
amplitude of the split signal is reduced and that the audible clicks in some applications
would need a short cross-fade.

Christos Loupis (Sonology 1st year master)
Christos his master-research deals with ‘coupled feedback systems as compositional

tools’ and he applied the SPG as a routing-tool for his feedback system. For the recordings
he shared with me, no explicit description was added on how he uses the SPG in his setup.
Since he is currently building one VC-SPG for his own setup, he is definitely interested in
the new dimensions the SPG offers for his future compositions.

https://soundcloud.com/user-520335425/matrilex-cv-switch-christos-loupis

8.3 Software results
The data that has to be sent to the SPG in order to drive and control the device, is a

properly formatted the right OSC-message, described in chapter “SPG communication”
on page <$p>.

/pa [byte 0] [byte 1] … [byte 8] (activate the preset immediately)
 /st [byte 0] [byte 1] … [byte 8] (store the preset in local memory)
 /cf [byte0] (control the SPG with the configuration byte)

The Max/Msp patch I created and that is available for every user that wants to explore
the SPG, is my implementation of how to interact with the SPG but there are many other
ways to do so (figure 4.8 on page 32) because other software can be developed to send the
OSC-message and control the SPG. During this master-research period multiple users
developed new software tools and ideas for driving the SPG. In this section two examples.

https://soundcloud.com/user-520335425/synthi-spg-01-edit
https://soundcloud.com/user-520335425/matrilex-cv-switch-christos-loupis

Page 61

Sohrab Motabar (Sonology 2nd yearMaster)
During the workshop Sohrab experimented with the original Max/Msp patch and

added new interesting features like converting a drawing into a matrix preset and using
noise to generate random patterns. See figure 8.4 to get an impression. Controlling the
SPG using noise can generate interesting sound material when it is part of a synthesizer
setup and ‘drawing a new preset’ introduces a new way of composing sounds - sound
painting.

In any artistic project it is interesting to have access to random processes available - the
matrix variations Sohrab introduced in the workshop can be of great help and inspiration
for future SPG users.

Figure 8.4 Left shows the graphical conversion to preset and on the right the noise to random preset.

Johan van Kreij (Sonology teaching staff)
One of the Max/Msp specialists, Johan van Kreij assisted me with the design of the

Max/Msp patch for driving the SPG. Due to his interest in new technology he
programmed a dedicated Max-object for the SPG. This is an object that generates the /pa
OSC-message based upon Java script coding. This code is much more efficient in
generating the OSC-messages in comparison with the conversions I made with the
standard matrix-object available in Max/Msp. The standard matrix-object generates row-
and column data with the corresponding value of the cell. If a cell is selected, the output
generates [column-number], [row-number], [0 if it is off and 1 if it is on]. This series of
three numbers has to be converted into the right syntax OSC-message for the SPG, as
explained on page 43.

To achieve this conversion from the standard matrix object into the right OSC syntax
with the standard Max/Msp objects is for many users a complex task. To simplify working
with the SPG, Johan created a special object that generates the right OSC-message syntax
for the SPG without any conversion needed. Catch a glimpse of the code on the right of
figure 8.5 and on the left the basic Max/Msp patch linked to it.

Page 62

Figure 8.5. On the right a sample of the code and on the left the linked Max/Msp patch

Page 63

9 Conclusion
What started two years ago as a project to design a tool for storing presets of patch

cables in an analogue studio environment, turned out to be a more powerful instrument
than I foresaw. To be able to drive 256 switches at high speeds, controlled by computer or
controlled by external signals, is not only a signal routing system with memories, but it also
introduces a new compositional tool or instrument for all kind of musical and artistic
applications.

The VC-SPG introduces new possible approaches for sound generation and music
composition when working in an analogue studio environment. Changing connections of
patch cables, at high or low speeds, was actually never part of an analogue studio setup
before and now can be applied even in sync with music, rhythmical patterns or triggered
by external events.

The users of the VC-SPG clearly state that the interface introduces a new tool for their
electronic music, workflow and composition. To be able to switch between presets during a
live performance creates a more diverse range of sounds, or change the active preset of the
studio setup by means of control-voltages, adds a new dimension to the artistic process.

The artistic results, shown in this thesis, are just the first results and I’m convinced the
VC-SPG will be used more often in the creation of new electronic music and art-
installations. I have identified different roles of the VC-SPG, but this does not mean that
all possible roles have been identified so far.

This research-project enriched my own perception of electronic music by reading
about electronic music, following lessons, discussing new options and attending the weekly
sonology master-circle and listening to and participating in discussions. I am more
involved with the musical and artistic application of the technology, than I was before. I
explored the possibilities of the VC-SPG myself by making recordings using the interface
embedded in the Doepfer A-100 modular synth. I enjoyed the exploration of sounds and
the enrichment the VC-SPG introduced for experimenting with high-speed, low-speed,
rhythmic, or chaotic preset changes and patterns.

One of the difficult challenges with the introduction of a new interface, like the VC-
SPG, is to overcome its complexity (the multitude of possibilities). For a lot of users the
SPG will be quite complex to use or apply because of dealing with network settings,
dealing with a Max/Msp patch and making a choice of which signals to use for switching.
It is therefore very important to keep the interface, as well as the software, as transparent
and simple as possible. The strength and power of a new piece of technology lies in its
simplicity — the easier the use, the better the interface.

I also think the introduction of the VC-SPG into the Sonology analogue studio Bea-5,
in combination with the other OSC related equipment (OSC-CV and CV-OSC) could be

Page 64

a start of a new series of workshops where Digital meets Analogue. By teaching and
sharing my expertise it will eventually generate more artistic and musical results and
stimulate the development of new technical designs in the future. I would therefore like to
introduce more workshops about this subject and I am convinced that the younger and
more digitally aligned students will eventually create completely new music with the aid of
these OpenSoundControl interfaces.

9.1 Future technical ideas and recommendation
After this master research project, the development of the VC-SPG will continue, as it

is an important part of my regular job within the Royal Conservatoire to develop new
technology for Art and Education. There are still a lot of technical things to be improved
and changed.

A list of ideas and suggestions:
- Make the sequence speed of the VC-SPG faster than the current limit of 1,7 kHz. It

would be a great step forward to use a new 16-bit or 32-bit controller instead of the 8-bit
microcontroller used in this design. The speed limit of the AD75019 audio-matrix itself is
set to 20 kHz — that is fast enough.

- Solve the issue of the amplitude reduction when a signal is split. Splitting a signal to
be routed to more outputs, should not have any influence on the amplitude. An additional
electronic solution should be added to avoid this.

- Design a solution to get rid of the audible clicks when switching between presets.
This might be done by working with two matrixes and using a fast fade in- and fade out
circuit in between the outputs of the two matrices. This will be an interesting future
challenge.

- A re-design of the printed circuit board is needed, so it will be less work to assemble a
Eurocard format module.

- An update for the assembly-code. There are always better ways to optimize the code
and to re-configure (simplify) the current setup. Furthermore additional code can be
included that provides the possibility to store the presets, even when the SPG is powered
down.

- An introduction of a so called ‘hand-shake’ option. When the user uploads the preset
into the VC-SPG, a signal should be available that confirms the new presets are stored and
ready to be used.

- Design a version to be installed into analogue studio Bea-5 in combination with clear
instructions, so the usage of the VC-SPG will be less difficult and more accessible.

Page 65

Page 66

Page 67

Appendix A

Microchip PIC18F2523 Block diagram

Page 68

Appendix B

Pin 1(MCLR) This is the master-clear pin. In normal function, this pin is connected to the +5V (or VCC). When this
pin is connected to ground 0V (GND), the firmware running inside the controller will restart the program from the top.
A hardware reset like this will take only a few micro-seconds.

Pin 2 (RA0) RA0 is defined to be a analogue input and the value connected to this pin, varying between 0V and 5V,
is converted into a 12-bit number (0-4096). In the desgin of the SPG this pin converts the incomming CV to the speed of
the sequence.

Pin 3 - Pin 7 (RA1 - RA5) are directly connected to switches changing the value of the pin between +5V and 0V.
Pin 8, Pin 19 and Pin 20 The power-supply connections. Vcc is +5V and GND, consisting of two connections, is 0V.
Pin 9, Pin 10 (OSC1, OSC2) The microcontrller need a clock signal ro ‘run’. The quartz crystal oscillator connected

to this pin provides the microcontroller with a very precize clock frequency of 7,342 MHz.
Pin 11 - Pin 13 (RC0 - RC2) The SPI communication protocol is used with these three pin’s, to transfer data to the

switching matrix. For details see the chapter communication.
Pin 14 - Pin 16 (RC3 and RC5) can be connected to switches if needed. Since version v85 of the firmware, the

swithes can be overruled by the /cf osc-message and the hardware switches are optional.
Pin 16 and Pin 17 (RC6 and RC7) These pins communicate with the Xport with RS-232 (see communications)
Pin 21 and Pin 22 (RB0 and RB1) The external trigger is connected to both of these pins and both are configured to

generate an internal interrupt if the signals changes its values from 0V to 5V (rising edge) or from 5V to 0V (falling
edge). An hardware interrup, or external interrupt, is an interruption of the firmware running and will execute a special
interrupt routine. See the chapter Software for more detailed information.

Pin 23 and Pin 24 (RB3 and RB4) when the SPG is used in manual mode, these pins, connected to two push
buttons, will step Up or Down through the presets stored in local memory and acitvate the preset.

Pin 25 (RB4) Like pin 2, also this pin is internally connected to the ADC convertor. It will read an analogue voltage
(ontrol-voltage) and convert this to a 12-bit value. The value is used to jump to a preset stored in local memory - so the
value is converted to a preset-id.

Pin 26 - Pin 28 (RB5 - RB7) Like RC0-RC2, these pins use the SPI protocol to write the actual preset-id to the 5
led’s, when the SPG is in manual mode.

Page 69

Appendix C
VT-SPG full circuit (Eagle 7.4.0)

Page 70

 Appendix D 1
Reference Model 1
8 in, 8 out with banana, female-headers and physical switches

The first prototype of the SPG, model 1

1. Sequence Up/Down. This switch determines if the sequence is running up- or
downwards.

2. OSC send messages On/Off. When you are sequencing through the local presets,
OSC-messages will be send back to the computer when this switch is On. For
debugging or visual feedback, this function is very useful. At high speeds this function
will influence the performance.

3. Start/ Stop sequence. Start or Stop the sequence. When this button is switched On,
the SPG will run through the presets stored in local memory.

4. Manual mode. If switched on, the SPG is in manual mode. In this (prototype model)
the up/down push buttons are not included.

5. Control Voltage to speed. This potentiometer generates 0-5V for analog input A0
which converts the incoming voltage into sequence speed. Depending on the status of
switch [8] this potentiometer or an external voltage can be the source.

6. Int./Ext. The SPG can sequence through presets based upon external or internal
signals. When the switch is set to internal, the speed of the sequence is linked to the
number (timer)received in the OSC-message. If the switch is set to external, the
triggers of the sequence are determined by the edges of the external input [11].

7. CV/OSC. The speed of the sequence can be determined by a control voltage or by
OSC (/cf message), which is stored in local memory.

8. CV speed Int./Ext. If this switch is set to external, the CV input of the SPG will be
connected to an external control-voltage. When set to internal, the potentiometer
described at [5] will be the voltage source.

9. CV-preset input. If you apply this control voltage and you select this option (v85), the
value will determine the next preset if the SPG is in sequence mode. Switch [16] will
activate or de-activate this mode.

10. CV-sequence speed input. This cv input can be used to change the speed go the
sequence linked to the value of the control voltage. If the value of the cv is high, the
speed is at its maximum (around 1,7kHz). Low values result in slower speeds.

11. External Sync input. This input can be used to connect an external (sync) signal.
When switch [6] is set to external, the SPG will step to the next preset in sequence on
the changing edge. See also switch [6].

Page 71

12. X0-X7, Input. 8 x audio input on banana connector and small pin header. It is
connected in parallel and connected in exact the same order as the banana connectors.
The maximum amplitude the SPG can switch is between -12V and +12V.

13. GND. Both banana and pin-header can be used for the ground connection. When you
are working with different devices, it’s important to make good ground connections.

14. Y0-Y7, Output. These 8 banana-connectors are physical outputs of the SPG. Also the
small pin-header connections can be used for output. It is connected in parallel and
they are connected in exact the same order as the banana connectors.

15. +5V. To provide external electronics with +5V, this small pin connection can be used.
Also connect the ground!

16. CV-preset On/Off. This switch determines if the cv-preset mode is active or not. See
also description [9].

17. Positive/Negative. If the SPG is triggered by an external signal [11], this switch
determines if only the positive-flank of the signal (OnSet) is used to step to the next
sequence, or both the rising and falling edge.

18. Reset. This is the reset button. It will reset the onboard microcontroller.
19. Ethernet In/Out. Direct ethernet connection (cat5) to the computer or network. The

communication is realized with OpenSoundControl.
20. Power connection. This is the power-connector. The SPG needs +15V, -15V and +5V.

Please use het appropriate power supply.

Page 72

Appendix D 2
Reference Model 2
16 in, 16 out, banana connectors and physical switches

Model 2 with banana connectors and physical switches

1. Start/ Stop sequence.
Start or Stop the sequence. When this button is switched On, the SPG will run
through the presets stored in local memory.

2. OSC send messages On/Off. When you are sequencing through the local presets,
OSC-messages will be send back to the computer when this switch is On. For
debugging or visual feedback, this function is very useful. At high speeds this function
will influence the performance.

3. Sequence Up/Down. This function determines if the sequence is running up- or
downwards.

4. CV/OSC. The speed of the sequence can be determined by a control voltage or by
OSC (/cf message), which is stored in local memory.

5. Int/Ext. The SPG can sequence through presets based upon external or internal
signals. When the switch is set to internal, the speed of the sequence is linked to the
number received in the OSC message. If the switch is set to external, the speed, or
triggers of the sequence, is determined by the edges of the external input [13].

6. Positive/Negative. If the SPG is triggered by an external signal [11], this switch
determines if only the rising edge of the signal (OnSet) is used to step to the next
sequence, or both rising- and falling-edge.

7. Manual mode. If switched on, the user can step through the presets manually with
switch [8, up] and switch [10, down].

8. Up. If manual mode is selected, pushing this button will step to the next preset.
9. Reset. Underneath the board (out of sight) a small push button is hidden. This is the

reset button. It will reset the onboard microcontroller.
10. Down. If manual mode is selected, pushing this button will activate the previous

preset.
11. External Sync. This input can be used to connect an external (sync) signal. When

switch [5] is set to external, the SPG will step to the next preset in sequence on the
changing edge. See also switch [6].

12. Led indication. These 5 leds indicate which preset is active when the SPG is in manual

Page 73

mode [7]. The indication is binary, varying from 00000-11111 (=32 presets).
13. CV-preset input. If you apply this control voltage and you select this option (v85), the

value will determine the next preset in line if the SPG is in sequence mode. Model 1
does not have a physical switch to activate this mode.

14. CV-sequence speed input. This cv input can be used to change the speed go the
sequence linked to the value of the control voltage. If the value of the cv is high, the
speed is at its maximum (around 1,7kHz). Low values result in slower speeds.

15. Power connection. This is the power-connector. The SPG needs +15V, -15V and +5V.
Please use het appropriate power supply.

16. Y0-Y15, Output. These 16 banana-connectors are physical outputs of the SPG. Also
the small pin-header connections can be used for output. It is connected in parallel and
they are connected in exact the same order as the banana connectors. From left to right
Y0-Y7 upper row and Y8-Y15 on the lower row.

17. GND. Both banana and pin-header can be used for the ground connection. When you
are working with different devices, it’s important to make good ground connections.

18. Ethernet In/Out. Direct ethernet connection (cat5) to the computer or network. The
communication is realized with OpenSoundControl.

19. +5V. To provide external electronics with +5V, this small pin connection can be used.
20. +12V. To provide external electronics with +12V, this small pin connector can be used.
21. X0-X15, Input. 16 x audio input on banana connector and small pin header. It is

connected in parallel and connected in exact the same order as the banana connectors.
From left to right X0-X7 upper row and X8-X15 on the lower row. The maximum
amplitude the SPG can switch is between -12V and +12V.

Page 74

Appendix D 3
Reference Model 3
16 in, 16 out, minijack connectors and physical switches

Model 3 with mono-minijack connectors for modular synths

1. Start/ Stop sequence. Start or Stop sequence through local memory. When this
button is switched On, the SPG will run through the presets stored in local memory.

2. OSC send messages On/Off. When sequencing through the local presets OSC-
messages will be send to the computer when this switch is On. At high speeds this
function will influence the performance.

3. Sequence Up/Down. This function determines if the sequence is running up- or
downwards.

4. CV/OSC. The speed of the sequence can be determined by a control voltage or by a
OSC received number, which is stored in local memory.

5. Int/Ext. The SPG can sequence through presets based upon external or internal
signals. When the switch is set to internal, the speed of the sequence is based upon the
number received in the OSC message. If the switch is set to external, the speed of the
sequence is determined by the edge of the external input (13).

6. Positive/Negative. If the SPG is triggered by an external signal (11), this switch
determines if only the rising edge of the signal (OnSet) is used to step to the next
sequence, or both the falling and rising edge.

7. Manual mode. If switched on, the user can step through the presets manually with
switch (8, up) and switch (10, down).

8. Up. If manual mode is selected, pushing this button will step to the next preset.
9. Reset. Underneath the board (out of sight) a small push button is hidden. This is the

reset button. It will reset the onboard microcontroller.
10. Down. If manual mode is selected, pushing this button will step to the previous preset.
11. External Sync. This input can be used to connect an external (sync) signal. When

switch (5) is set to external, the SPG will step to the next preset in sequence on the
changing edge. See also switch (6).

12. Led indication. These 5 leds indicate which preset is active when the SPG is in
manual mode (7). The indication is binary, varying from 00000-11111 (32 presets).

Page 75

13. Power connection. This is the power-connector. The SPG needs +15V, -15V and +5V.
Please use het appropriate power supply.

14. Y0-Y15, Output. These 16 banana-connectors are physical outputs of the SPG. Also
the small pin header can be used for output. It is connected in parallel and the
connected in exact the same order as the banana connectors. From left to right Y0-Y7
upper row and Y8-Y15 on the lower row.

15. Ethernet In/Out. Direct ethernet connection (cat5) to the computer or network.
Communication is realized with OpenSoundControl.

16. X0-X15, Input. 16 x audio input on banana connector and small pin header. It is
connected in parallel and connected in exact the same order as the banana connectors.
From left to right X0-X7 upper row and X8-X15 on the lower row. The maximum
amplitude for the SPG to switch is between -12V and +12V.

Page 76

Appendix D 4
Reference Model 4
16 in, 16 out, banana-connectors + pin headers, no switches

Model 4, with banana connections and pin-headers. No switches.

1. Ext. Trigger input. Sending trigger signals with falling or rising edge, will activate the step to the next
preset, when the SPG is in sequence mode.

2. CV-preset input. If you apply this control voltage and you select this option (v85), the value will
determine the next preset in line if the SPG is in sequence mode. Model 1 does not have a physical
switch to activate this mode.

3. CV-sequence speed input. This cv input can be used to change the speed go the sequence linked to the
value of the control voltage. If the value of the cv is high, the speed is at its maximum (around 1,7kHz).
Low values result in slower speeds.

4. Power connection. This is the power-connector. The SPG needs +15V, -15V and +5V. Please use het
appropriate power supply.

5. Y0-Y15, Output. These 16 banana-connectors are physical outputs of the SPG. Also the small pin-
header connections can be used for output. It is connected in parallel and they are connected in exact the
same order as the banana connectors. From left to right Y0-Y7 upper row and Y8-Y15 on the lower
row.

6. GND. Both banana and pin-header can be used for the ground connection. When you are working with
different devices, it’s important to make a good ground connection.

7. Ethernet In/Out. Direct ethernet connection (cat5) to the computer or network. The communication is
realized with OpenSoundControl.

8. +5V. To provide external electronics with +5V, this small pin connection can be used.
9. +12V. To provide external electronics with +12V, this small pin connector can be used.
10. X0-X15, Input. 16 x audio input on banana connector and small pin header. It is connected in parallel

and connected in exact the same order as the banana connectors. From left to right X0-X7 upper row
and X8-X15 on the lower row. The maximum amplitude the SPG can switch is between -12V and +12V.

Page 77

Appendix D 5
Reference model 5
16 in, 16 out, 1/4” jack connectors and no physical switches

 Model 5 made with 1/4” inch jack (PL)

1. Ext. Trigger input. Sending trigger signals with falling or rising edges, will activate the step to the next
preset, when the SPG is in sequence mode.

2. CV-preset input. If you apply this control voltage and you select this option (v85), the value will
determine the next preset in line if the SPG is in sequence mode. Model 1 does not have a physical
switch to activate this mode.

3. CV-sequence speed input. This cv input can be used to change the speed go the sequence linked to the
value of the control voltage. If the value of the cv is high, the speed is at its maximum (around 1,7kHz).
Low values result in slower speeds.

4. Power connection. This is the power-connector. The SPG needs +15V, -15V and +5V. Please use het
appropriate power supply.

5. Y0-Y15, Output. These 16 banana-connectors are physical outputs of the SPG. Also the small pin-
header connections can be used for output. It is connected in parallel and they are connected in exact the
same order as the banana connectors. From left to right Y0-Y7 upper row and Y8-Y15 on the lower
row.

6. Ethernet In/Out. Direct ethernet connection (cat5) to the computer or network. The communication is
realized with OpenSoundControl.

7. X0-X15, Input. 16 x audio input on banana connector and small pin header. It is connected in parallel
and connected in exact the same order as the banana connectors. From left to right X0-X7 upper row
and X8-X15 on the lower row. The maximum amplitude the SPG can switch is between -12V and +12V.

Page 78

Appendix D 6
Reference model 6
16 in, 16 out, minijack connectors and one manual-mode switch

Model 6, eurorack compatible

1. Euro-rack power supply. This is the standard power-supply connector for Doepfer
related Euro-rack models. It consists of +12, -12, Gnd, +5 and two bus connections.
The SPG does not support the bus-connections (yet). The exact pin-out can be
found on the Doepfer website.

2. Y0-Y15, Output. These 16 banana-connectors are physical outputs of the SPG. Also
the small pin-header connections can be used for output. They are connected in
parallel and connected in exact the same order as the banana connectors. From left
to right Y0-Y7 upper row and Y8-Y15 on the lower row.

3. CV-preset input. If you apply this control voltage and you select this option (v85),
the value will determine the next preset in line if the SPG is in sequence mode.
Model 1 does not have a physical switch to activate this mode and switch between
internal potentiometer and external cv.

4. CV-sequence speed input. This cv input can be used to change the speed go the
sequence linked to the value of the control voltage. If the value of the cv is high, the
speed is at its maximum (around 1,7kHz). Low values result in slower speeds.

5. Manual On/Off. You can switch to manual-mode. The leds [10] will indicate which
preset is active and with the switches [9] and [11] you can step Up or Down.

6. External trigger input. Sending trigger signals with falling and/or rising edges, will
activate the step to the next preset, when the SPG is in sequence mode.

7. X0-X15, Input. 16 x audio input on banana connector and small pin header. It is
connected in parallel and connected in exact the same order as the banana
connectors. From left to right X0-X7 upper row and X8-X15 on the lower row. The
maximum amplitude the SPG can switch is between -12V and +12V.

8. Ethernet In/Out. Direct ethernet connection (cat5) to the computer or network.
The communication is realized with OpenSoundControl.

9. Up. If manual mode is selected, pushing this button will step to the next preset.
10. Led indication. These 5 leds indicate which preset is active when the SPG is in

manual mode [7]. The indication is binary, varying from 00000-11111 (=32 presets).
11. Down. If manual mode is selected, pushing this button will activate the previous

preset.

Page 79

Appendix E

Interrupt routine OSC-message receive

Page 80

Appendix G
Max/Msp patch (v85)

This is maxpatch version v85 and can be downloaded at: http://www.ipson.nl/osc-downloads

1. The matrix. Clicking on the gray dots wil instantly send a /pa string to the SPG, activating this
connection. If a preset is created, this preset can be stored by shift-clicking on one of the locations in [2].

2. Preset banks. In this box the presets created in the matrix [1] can be stored. The preset can also be
written to file or read from file. To create a physical connection, click on the right junctions in the
matrix[1]. If the dots are lighting up in yellow, the connections are active and the preset can be stored.
Storing a preset can be done by clicking on the right number preset box in [2] and hold down the shift
key at the same time. When all presets are made and it is time to sequence through the different presets,
select the right number (1-6) in box [2] and start the sequence with the start button in box [8].

3. Udpsend. The computer has to send the OSC-messages to the right ip-address and port. On the left side
in box[3] the ip-address and port of the SPG has to be filled in. The port number should be 10001.

4. Udpreceive. On the right side the receiving port is defined. Port 8000 will be set to receive OSC-
messages from the SPG, unless it is configured differently in the embedded webserver (see getting
started).

5. Sequence from lists. When you created presets, but you want to sequence through the presets in a
specific order other than up/down, you should create and use lists. If the button ‘Seq List’ is active
(green, or blue) the OSC sequence start/stop [9] will sequence from the list [5]. In this list presets-id’s
are written from the selected bank at [2]. Before the list can be sequenced, the list should be ‘pushed’ or
activiated (red/black button).

6. OSC visual feedback. This part of the patch shows the incoming OSC-messages from the SPG in order
to have (visual) feedback. Whether the SPG will send OSC messages back to the computer depends on
the settings of the switches or the settings of the controls explained at [6]. When the ‘print Max’ switch
is turned on, the patch will print the vales that are send to the SPG in the max-window. This option is
for controlling or testing purposes only - it will slow down the total performance of the Max patch
considerably.

7. Configure SPG. This part of the patch controls the configuration. The switches in this box replacing the
physical switches on the different models. The biggest button on top start/stops the local sequence. The
following options can be chosen going down in the patch: Internal or external trigger; Only positive or
falling and rising edge reaction for external trigger; Internal normal sequence (up/down) or ext. cv-
sequence; At normal sequence up or down; The source for the speed (timing) from OSC (the patch) or
from ext. Cv-speed; The last one is switching On/Off the OSC-feedback.

8. Uploading presets to the SPG. This box sends the /st OSC-message in order to store the presets in
local memory. When the big cross (upload to SPG) is clicked, the active preset bank, selected at [2], will
be uploaded. The rest of the variables shown in this box [7] generate a new /cf OSC-message changing
the timer and the amount of presets (N) of the sequence.

9. OSC-sequence. This part starts or stops the OSC-sequence. If it is active the patch sends /pa OSC-
messages at variable speeds and it sequences through the selected preset-bank [2]. The speed and the
amount of presets of the sequence (N) can be set as well. To offer more variation a choice of Up/Down,
Pendulum (up and down) or ‘Urn’ are offered. This last option ‘Urn’ sequences through a set of presets
(bank) in random order, but will use all the presets at least one time before starting with the next round.

http://www.ipson.nl/osc-downloads

Page 81

Appendix H

VC-SPG Printed Circuit Board layout (PCB) (Eagle 7.4.0)

Printed circuit board with all layers visible. Red is the top-layer. Blue is the bottom-layer.

Printed circuit board with only the components (Silk screen tekst layer)

Page 82

 Appendix I 7
;__
; processor and configuration
;__

;kristal 7,3728 Mhz / baudrate van 921600 K and a clock of 29.491 MHz

INCLUDE "p18f2523.inc" ;specificatie processor
radix dec ;default is decimal
config OSC = HSPLL ;HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)
config WDT = OFF ;WDT watch dog timer
config DEBUG = OFF ;DEBUG background debugger (RB6 en RB7 in circuit debug)
config LVP = OFF ;LVP Single-Supply ICSP in circuit programming (pin RB5)
config XINST = OFF ;XINST extended instruction set (moet uit)
config BOREN = ON ;BOREN brown-out-timer reset CPU als de spanning te laag wordt
config PWRT = ON ;PWRT power up timer
config PBADEN = ON ;PBADEN portb<4:0> digitaal i/o (OFF) analoog input (ON)
config CP0 = OFF ;Code Protection Block 0 --> Disabled
config CP1 = OFF ;Code Protection Block 1 --> Disabled
config CPB = OFF ;Boot Block Code Protection --> Disabled
config WRT0 = OFF ;Write Protection Block 0 --> Disabled
config WRT1 = OFF ;Write Protection Block 1 --> Disabled
config WRTB = OFF ;Boot Block Write Protection --> Disabled

;--
; def. memory and interrupts vector
;---

ORG 0x0000 ;start free memory / resort vector
goto init
ORG 0x0008 ;interrupt high priority
goto hp_int
ORG 0x0018 ;interrupt low priority
goto lp_int

;---
; definition variables
;---
time equ 0x0020
recflag equ 0x0021
teller equ 0x0022
nummer equ 0x0023
datacnt equ 0x0024
tmprec equ 0x0025
waarde equ 0x0026
bitcnt equ 0x0027
preset_id equ 0x0028
temp equ 0x0029
int_stat equ 0x002a
t0telh equ 0x002b
t0tell equ0x002c
presteld equ 0x002d
prestelu equ 0x002e
a_preset equ 0x002f
adh equ 0x0030
adl equ 0x0031
downteller equ 0x0032
oscconfig equ0x0033
telstat equ 0x0034
var1 equ 0x0035
var2 equ 0x0036
var3 equ 0x0037
tmpdisp equ 0x0038
ledcnt equ 0x0039
tmppresh equ 0x003a
tmppresl equ 0x003b
prescvtel equ 0x003c
cf_byte equ 0x003d
SPG_stat equ 0x003e
;--
;Initialization and definition
;--
init

clrf PORTA

Page 83

Appendix I 8
clrf PORTB
clrf PORTC
clrf LATA
clrf LATB
clrf LATC

;Configure in- and output
movlw B'00111111' ; a0 analog in, a1-a5 switch input,
movwf TRISA, ;
movlw B'00011111' ; portb,0 INT0; portb,1 INT1, rising/falling edge, cv-preset on B4
movwf TRISB ;
movlw B'10111000' ; portc7 Rx in; portc3 input
movwf TRISC

;----------------------------
;Configure AD convertor

movlw B'00000000' ; channel 0 An0 (porta,0) als input analog;
movwf ADCON0 ; Ad off
movlw B'00001110' ; An0 and An11 input for CV
movwf ADCON1 ; b3-b0 (pcfg3-pcfg0) = 1110
movlw B'10110010' ; format (right aligned)
movwf ADCON2 ; Acquisition time (b5-b3) 16Tad

; Conversion clock select bits (b2-b0) Fosc/32
; Interrupt for AD conversion
 bcf pie1,6 ; interrupt enable (disable)
;----------------------------
;instellen seriele interface (tbv xport)

bsf TXSTA,2 ;high speed (BRGH=1)
bcf TXSTA,3 ;sync break transmission completed
bcf TXSTA,4 ;asynchroon (SYNC=0)
bsf TXSTA,5 ;transmit enabled (TXEN=1)
bcf TXSTA,6 ;8 bits transmissie (TX9=0)
bsf RCSTA,4 ;enable continuous receiver (CREN=1)
bcf RCSTA,6 ;8 bits (RX9=0)
bsf RCSTA,7 ;serial port enable (SPEN=1)
bcf baudcon,7 ;ABDOVF no auto-baud acquisition rollover
bsf baudcon,3 ;8 bit baud rate (BRG16=0)
bcf baudcon,1 ;WUE wake-up enable bit
bcf baudcon,0 ;baud rate measurement disabled (ABDEN=0)
movlw D'7' ;decimale waarde voor de baudrate bij kristal 7,3728 Mhz

;7 bij 921600K, 15 bij 460800K, 31 bij 230400K, 63 bij 115200K
movwf SPBRG

;----------------------------
;instellen tmr0

movlw b'01001000' ; tmr0 tmp off (b7), 8 bit timer, psa not assigned; pres scale: 1:1
movwf t0con
bcf t0con,7 ; timer0 on/off (0=off, 1=on)

; interrupt van trm0
bsf intcon,5 ; interrupt enable tmr0

;--
; Config interrupt on recflag portb,0 (falling, rising edge)

bcf intcon,4 ; INT0IE (interrupt enable)
bsf intcon2,6 ; INTEDG0 bit. Als 1, rising edge. Als 0, falling edge
bcf intcon,1 ; INT0IF (interrupt flag)

;--
; Config interrupt on recflag portb,1 (falling, rising edge)

bsf intcon3,3 ; INT1IE Interrupt enable bit
bcf intcon2,5 ; INTEDG1 bit. Als 1, rising edge. Als 0, falling edge
bcf intcon3,0 ; INT1IF Interrupt flag

bsf intcon3,6 ; INT1IP Interrupt priority (set on high)
;Config interrupt

bsf pie1,5 ; enables/disables receive int.
bcf pie1, txie ; disable tx int.
bsf Rcon,7 ; IPEN enable priority levels on interrupts (p.102)
bsf Rcon,7 ; power on reset (por) Zie p42.
bsf ipr1,5 ; RCIP EUSART receive interrupt priority (1=high, 0=low) (p.96)
bsf intcon2,2 ; Tmr0 interrupt high prio
bsf intcon2,7 ; portb internal pullup active
bsf INTCON,GIEH ; GIE/GIEH global high priority interrupt enable
bsf INTCON,GIEL ; PEIE/GIEL enables all low priority interrupts

;------------------
; Start values

Page 84

Appendix I 9
clrf recflag
clrf oscconfig
clrf waarde
clrf int_stat
clrf t0tell
clrf t0telh
lfsr fsr0, 40h ; init waarde receive routine
movlw d'8'
movwf bitcnt
clrf porta
bsf portc,2 ; load moet hoog zijn

;--
; Make AD75019 clean at startup

movlw d'32' ; 256 x 0 naar AD75019
movwf teller

init_empty ; AD75019 op nul zetten
clrf waarde ; 32 x 8 bits sturen
call writedata
decfsz teller
goto init_empty
call trigger ; maak actief

; Led-display off:
 movlw 0x00
 movwf a_preset
 call writeled

goto main

;+++++++++++++++++++++
; Interrupts handling routines
;+++++++++++++++++++++
hp_int
; ---
; High Prior Interrupt. Afhandelen van de timer
; interrupt handling tmr0

btfsc intcon,2 ; timer0 interrupt?
goto metro ; Yes, go to metro
btfsc intcon,1 ; interrupt portb,0 (INT0)
goto sync_time_0 ; yes
btfsc intcon3,0 ; interrupt portb,1 (INT1)
goto sync_time_1 ; yes

;--
osc

btfss pir1,5 ; Received data eusart?
retfie fast ; No, return

osclezen
btfss recflag,7 ; ja, alle header info correct?
goto header_check nee, dus eerst checken
btfsc recflag,2 ; is het /cf (bit2=1) of /st /pa (bit2=0)
goto cf_byte_rec ; bit2=1

pa_st_byte
movff rcreg, postinc0 ; ja, inlezen naar indf0 en fsr0l verhogen
movlw 0x73
cpfsgt fsr0l ; alles binnen?
retfie fast ; nee, wachten op volgende interrupt
movlw b'00000010' ; /st:bit1=1, /pa:bit1=0, rest bits op nul
andwf recflag
bsf recflag,0 ; set flag voor main routine
bcf oscconfig,7 ; reset flag voor main routine
retfie fast

cf_byte_rec
movff rcreg, postinc0 ; Yes, write to indf0 and fsr0l +1
movlw 0x8b
cpfsgt fsr0l ; All in?
retfie fast ; No, wait for next interrupt
clrf recflag
bsf recflag,0 ; set flag for main routine
bsf oscconfig,7 ; set flag for main routine
retfie fast

Page 85

Appendix I 10
;----------------------------
header_check
movff rcreg, tmprec ; Read char

btfsc recflag,6 ; Busy receiving header?
goto b5check ; Yes, check next
movlw a'/' ; No, test char ‘/‘
cpfseq tmprec
retfie fast
bsf recflag,6
retfie fast

b5check
btfss recflag,5 ; Char 'p' received?
goto b4check
movlw a'a'
cpfseq tmprec
goto clearall
bsf recflag,7
bcf recflag,1
bcf recflag,2
lfsr fsr0, 43h
retfie fast

b4check
btfss recflag,4 ; Char 's' received?
goto b3check
movlw a't'
cpfseq tmprec
goto clearall
bsf recflag,7
bsf recflag,1
bcf recflag,2
lfsr fsr0, 43h
retfie fast

b3check
btfss recflag,3 ; Char 'c' received?
goto pcheck
movlw a'f'
cpfseq tmprec
goto clearall
bsf recflag,7
bcf recflag,1
bsf recflag,2
lfsr fsr0, 83h
retfie fast

pcheck
movlw a'p'
cpfseq tmprec
goto scheck
bsf recflag,5
retfie fast

scheck
movlw a's'
cpfseq tmprec
goto ccheck
bsf recflag,4
retfie fast

ccheck
movlw a'c'
cpfseq tmprec
goto clearall
bsf recflag,3
retfie fast

clearall
clrf recflag
clrf oscconfig
lfsr fsr0, 40h
retfie fast

Page 86

Appendix I 11
;------------------------------------
metro

btfsc int_stat,7 ; busy?
goto bezig ; Yes
movff adh, t0telh ; No, new values
movff adl, t0tell
bsf int_stat,7
goto intend

bezig
 tstfsz t0telh
 goto _tel
last_tel

tstfsz t0tell
 goto lownotzero
 goto tel_ready
_tel
 tstfsz t0tell
 goto lownotzero
 decf t0telh
 movlw 0xff
 movwf t0tell
 goto intend
lownotzero
 decf t0tell
 goto intend
tel_ready

bsf int_stat,0 ; ready, set flag
bcf int_stat,7

intend
bcf intcon,2 ; clear int flag
retfie fast

;--
sync_time_0 ; interrupt for rising edge

bsf int_stat,0 ; set flag for main
bcf intcon,1 ; clear flag
retfie fast

sync_time_1 ; interrupt voor falling edge
bsf int_stat,0 ; set flag voor mainroutine
bcf intcon3,0 ; clear flag
retfie fast

;--------------------------------------
; LOW prior interrupt routine
lp_int

retfie
; __
; Main loop
;___
main
 btfss oscconfig,7 ; flag voor nieuwe /cf ?
 goto newdatacheck ; no, check other data
 lfsr fsr1,8bh ; yes, read configdata

movff indf1, cf_byte ; and store in cf_byte
 btfsc SPG_stat,0
 bcf oscconfig,7 ; clear flag
newdatacheck

btfss recflag,0 ; string ontvangen?
goto nonewdata ; no, check manual and sequence

store_or_write
btfsc recflag,1 ; yes, is it a /st?
goto prog ; yes, transfer ontvangen byte
call wp0 ; no, it's a patch /pa
call trigger ; activate
clrf recflag,0 ; clearflag
goto main ; back to main

nonewdata
btfsc porta,1 ; manual knop actief?
goto mlstart ; ja, start manual mode

sw_check
btfss porta,2 ; sequence knop actief?

 goto cf_check
 bcf oscconfig,0 ; main switch for config source choice

goto MasterMainSequence
cf_check
 btfss cf_byte,6 ; check if source is cf_byte

Page 87

 Appendix I 12
goto main ; no, goto main

 bsf oscconfig,0 ; yes, set main bit
;--
; Main Sequence Initialization
;--
MasterMainSequence
 btfss oscconfig,0 ; check mode (sw or /cf)
 goto sw_byte_config
cf_byte_config
 lfsr fsr1,8bh ; read configdata
 movff indf1, cf_byte ; and store in cf_byte

 movff cf_byte, SPG_stat
 goto sequence_init
sw_byte_config
 btfsc porta,3 ; porta,3 = OSC return On/Off
 goto setb0
 bcf SPG_stat,0
 goto b1
setb0
 bsf SPG_stat,0
b1 btfsc porta,4 ; porta,4 = Sequence Up/Down
 goto setb1
 bcf SPG_stat,1
 goto b2
setb1
 bsf SPG_stat,1
b2 btfsc porta,5 ; porta,5 = Timing source OSC/Cv
 goto setb2
 bcf SPG_stat,2
 goto b3
setb2
 bsf SPG_stat,2
b3 btfsc portc,3 ; portc,3 = Int / Ext trigger
 goto setb3
 bcf SPG_stat,3
 goto b4
setb3
 bsf SPG_stat,3

b4 btfsc portc,4 ; portc,4 = Norm sequence / CV- preset
 goto setb4
 bcf SPG_stat,4
 goto b5
setb4
 bsf SPG_stat,4
b5 btfsc portc,5 ; ext trigger positive flank / both flanks
 goto setb5
 bcf SPG_stat,5
 goto b6
setb5
 bsf SPG_stat,5
b6 btfsc porta,2 ; porta,2 = sequence start / stop
 goto setb6
 bcf SPG_stat,6
 goto b7
setb6
 bsf SPG_stat,6
b7 bcf SPG_stat,7 ; switch modus
; goto sequence_init
;---
; Sequence init
;---
sequence_init

lfsr fsr1, 88h ; Aantal presets waar doorheen gesequenced gaat worden
movff indf1, prestelu ; Teller voor Up
movff indf1, presteld ; teller voor down

btfss SPG_stat,3 ; interne of externe timing
goto int_seq_init ; portc,3=0, intern

ext_seq_init ; portc,3=1, externe
bcf t0con,7 ; timer0 uit
bcf intcon,5 ; interrupt disable tmr0

Page 88

Appendix I 13
bsf intcon,4 ; INT0 interrup enable
bcf int_stat,0 ; int flag reset
btfsc SPG_stat,5 ; Beide falling and Rising? (ofwel INT1 ook aanzetten)?
goto both
bcf intcon,4 ; INT0IE disable
bsf intcon3,3 ; INT1IE (Interrupt enable)
bsf intcon2,6 ; Rising only
goto seq_start

both
bsf intcon,4 ; INT0IE (interrup enable)
bsf intcon3,3 ; INT1IE (Interrupt enable)
bsf intcon2,6 ; INTEDG0 (Rising)

bcf intcon2,5 ; INTEDG1 (Falling)
bcf int_stat,0 ; interrupt flag reset
goto seq_start

;---
int_seq_init ; portc,3=0, intern

bcf intcon,4 ; INT0IE (interrupt disable)
bcf intcon3,3 ; INT1IE (interrupt disable)
bsf intcon,5 ; interrupt enable tmr0
bcf t0con,7 ; timer even uit
bcf int_stat,0 ; int_flag reset
bsf t0con,7 ; timer weer aan

;--
; start sequence
;--
seq_start

btfsc SPG_stat,6 ; nog steeds sequencen?
goto seq

 call empty_stop
 goto main
seq

btfsc SPG_stat, ; CV to preset?
 goto cv_preset ; yes

btfss SPG_stat,1 ; No, up or down
goto seq_down

;---
; sequence UP

seq_up
movlw 0x01 ; up
movwf a_preset
movff presteld, downteller

seq_up_cont
btfsc int_stat,0 ; Interrupt al geweest? (kan timer OF trigger zijn)

 goto activate_up
 lfsr fsr1,8bh ; status lezen
 movff indf1, SPG_stat
 btfsc int_stat,0
 goto activate_up
 call timerchoice
 btfsc int_stat,0
 goto activate_up
 btfss SPG_stat,6 ; als interrupt niet komt (geen trigger)
 goto seq_start ; wel uit de loop springen
 goto seq_up_cont
activate_up

call writepatch ; schrijf de actieve preset
call trigger ; actief
bcf int_stat,0 ; interrupt flag reset (ext/int)
incf a_preset
decfsz downteller
goto seq_up_cont
movlw 0x01 ; ja, begin opnieuw
movwf a_preset
movff presteld, downteller
goto seq_start

Page 89

Appendix I 14
;---
; Sequence DOWN
; a_preset is actieve teller
seq_down ; begin waarde laden

movff presteld, a_preset
seq_down_cont
 btfsc int_stat,0 ; Interrupt al geweest? (kan timer OF trigger zijn)
 goto activate_down
 lfsr fsr1,8bh ; status lezen
 movff indf1, SPG_stat
 btfsc int_stat,0
 goto activate_down
 call timerchoice
 btfsc int_stat,0
 goto activate_down
 btfss SPG_stat,6 ; als interrupt niet komt (geen trigger)
 goto seq_start ; wel uit de loop springen

goto seq_down_cont
activate_down

call writepatch ; schrijf data
call trigger ; activeer

 call timerchoice ; test
bcf int_stat,0 ; reset int flag (int/ext)
decfsz a_preset
goto seq_down_cont
movff presteld, a_preset ; opnieuw
call timerchoice
goto seq_start

; ---
; CV to preset
; Analog value converted to preset
; adjust value to amount of presets in ram
cv_preset
 bcf intcon,5 ; interrupt disable tmr0

bcf t0con,7 ; timer uit
cvseq_main
 call readcvforpreset
 call cv2preset ; read CV on An11 and convert number to a_preset
cvseq_wait
 lfsr fsr1,8bh ; status lezen
 movff indf1, SPG_stat
 btfss SPG_stat,6
 goto seq_start
act_cv_pres

call writepatch ; schrijf de actieve preset
call trigger ; actief

 goto cvseq_main
;--------------------------------
; Convert Cv (AN11) to a_preset
; done by shifting the ad result
cv2preset
 lfsr fsr1, 90h
 movff indf1,tmppresh
 incf fsr1l
 movff indf1,tmppresl
 lfsr fsr1, 88h
 movff indf1, prescvtel
 ; depending on the amount of presets (N, or
 ; lfsr 88h) changing the scale of the CV to preset
 movlw d'3' ; presetd = smaller then 3
 cpfsgt prescvtel
 goto pr3
 movlw d'7'
 cpfsgt prescvtel
 goto pr7
 movlw d'15'
 cpfsgt prescvtel
 goto pr15
 goto pr32
pr3
 rrncf tmppresh
 rrncf tmppresh
 movlw b'00000011'
 andwf tmppresh

Page 90

Appendix I 15

movff tmppresh, a_preset
 return
pr7
 rrncf tmppresh
 movlw b'00000111'
 andwf tmppresh
 movff tmppresh, a_preset
 return
pr15
 movlw b'00001111'
 andwf tmppresh
 movff tmppresh, a_preset
 return
pr32
 rlncf tmppresh ; highbyte 1 bit to left
 btfss tmppresl,7 ; lowbyte test bit 7
 goto notset
 bsf tmppresh,0
 goto setpreset
notset
 bcf tmppresh,0
setpreset
 movlw b'00011111' ; only b0-b4 are important
 andwf tmppresh
 movff tmppresh, a_preset
 return
; --------------------------------------
; read ad convertor on input B4 (AN11) -
; cv to preset
readcvforpreset

movlw B'00101100' ; channel An11 (portb,4) als input analog;
movwf ADCON0 ; Ad staat nog even uit
movlw b'00000000'
movwf adcon1
movlw d'6'
movwf teller

aquis
decfsz teller
goto aquis
bsf adcon0,0 ; zet AD converter aan
bsf adcon0,1 ; set go/done bit

godo
btfsc adcon0,1
goto godo

 lfsr fsr1, 90h ; waarde voor (exp) cv to preset
 movff adresh, postinc1

movff adresl, indf1 ; 91h
movlw b'00001110' ; om poort b0-b3 weer te kunnen gebuiken digitaal
movwf adcon1 ; adcon1 weer terugzetten naar deze waarde
return

; --------------------------------------
; read ad convertor on input A0
; cv to speed
Readcvforspeed

movlw B'00000000' ; channel 0 An0 (porta,0) als input analog;
movwf ADCON0 ; Ad staat nog even uit

 ; b6 en b7 nc
movlw b'00000000'
movwf adcon1
movlw d'6'
movwf teller

aquisition
decfsz teller
goto aquisition
bsf adcon0,0 ; zet AD converter aan
bsf adcon0,1 ; set go/done bit

godone
btfsc adcon0,1
goto godone
lfsr fsr1, 92h ; waarde naar 92h
movff adresh, postinc1
movff adresl, indf1 ; 93h
movlw b'00001110' ; om poort b0-b3 weer te kunnen gebuiken digitaal
movwf adcon1 ; adcon1 weer terugzetten naar deze waarde

Page 91

Appendix I 16
return
;--
; Leegschrijven matrix bij einde sequence
empty_stop
 btg portb,7

bcf t0con,7 ; sequence stoppen en ad75019 leeg schrijven
movlw d'32' ; 256 x 0 naar AD75019
movwf teller

s_end ; AD75019 op nul zetten
clrf waarde ; 32 x 8 bits sturen
call writedata
decfsz teller
goto s_end
call trigger ; maak actief
return

;--
; Timer choice. CV input of OSC lfsr 52h en 53h
; test of timer/cv speed determines timer:
; porta,5 =1, CV (porta,0) porta,5=0

timerchoice
btfss SPG_stat,2
goto osc_timer ; no

cv_timer ; yes
call readcvforspeed
lfsr fsr1, 88h ; vooralsnog waarden van osc
movff indf1, prestelu ; counters
movff indf1, presteld ; up and down

 lfsr fsr1,92h ; timer waarde msb
movff indf1, adh
lfsr fsr1, 93h ; timer waarde lsb
movff indf1, adl
return

osc_timer ; waarde uit osc tabel halen
lfsr fsr1, 88h ; ook de aantal preset waarde
movff indf1, prestelu
movff indf1, presteld
lfsr fsr1, 89h ; timer waarde msb van /cf
movff indf1, adh
lfsr fsr1, 8ah ; timer waarde lsb van /cf
movff indf1, adl
return

;---
; programmeer mode
prog

btfss recflag,1 ; extra test
goto main
call transfer
bcf recflag,0 ; all flags osc-interrupt reset
bcf recflag,1
goto main

;--
; manual mode. Check porta,1 (manual/On/Off)
; check portb2 (next)
; check portb3 (prev)
mlstart

movlw 0x01 ; begin waarde actieve preset
movwf a_preset
call writepatch ; schrijf de actieve preset
call trigger ; actief
call writeled

manloop
btfsc porta,1 ; manualmode?
goto manual
call empty_stop ; nee, stoppen AD75019 leeg
movlw 0x00
movwf a_preset
call writeled
goto main

manual
btfss portb,2 ; next
goto a_next
btfss portb,3 ; previous
goto a_prev

Page 92

Appendix I 17
goto manloop

a_next
call waitxs ; wait
btfsc portb,2 ; nogmaals schak testen
goto manloop
incf a_preset
movlw 0x20
cpfseq a_preset
goto a_next2
movlw 0x01
movwf a_preset

a_next2
call writepatch ; schrijf de actieve preset
call trigger ; actief
call writeled
goto manloop

a_prev
call waitxs ; wait
btfsc portb,3 ; nogmaals schak testen
goto manloop ; moet waarschijnlijk wachtloopje voor .. 100 ms?

decfsz a_preset
goto a_prev2
movlw 0x20 ; maximaal 25 presets
movwf a_preset

a_prev2
call writepatch ; schrijf de actieve preset
call trigger ; actief
call writeled
goto manloop

;---
; transfer received string
transfer

lfsr fsr1, 50h
movff indf1, preset_id ; preset_id

trans1
movlw 0x01
cpfseq preset_id ; als gelijk naar transfer 1
goto trans2
movlw d'32'
movwf teller
lfsr fsr1, 54h
lfsr fsr2, 100h

t1 movff postinc1, temp
movff temp, postinc2
decfsz teller
goto t1
return

trans2
movlw 0x02
cpfseq preset_id
goto trans3
movlw d'32'
movwf teller
lfsr fsr1, 54h
lfsr fsr2, 120h

t2 movff postinc1, temp
movff temp, postinc2
decfsz teller
goto t2
return

… etc… (trans3 - trans31)
trans32

movlw 0x20
cpfseq preset_id
return
movlw d'32'
movwf teller
lfsr fsr1, 54h
lfsr fsr2, 4e0h

t32 movff postinc1, temp
movff temp, postinc2
decfsz teller
goto t32
return

Page 93

Appendix I 18
;--
; WritePatch
writepatch
 btfss porta,3
 goto testcfbyte
 bsf SPG_stat,0 ; op basis van dit byte wel/geen osc terug sturen
 goto p1
testcfbyte
 btfsc cf_byte,0
 goto oscsetbit
 goto oscclearbit
oscsetbit
 bsf SPG_stat,0
 goto p1
oscclearbit
 bcf SPG_stat,0
p1 movlw d'1'

cpfseq a_preset
goto p2
call wp1
return

p2 movlw d'2'
cpfseq a_preset
goto p3
call wp2
return
… … etc… (p3-p31)

p32 movlw d'32'
cpfseq a_preset
return
call wp31
return

;--------------------------------------
; Active direct Patch (osc receive) 54-73
; data schrijven naar AD75019 in 8x8 opzet
; Wel alle 256 bits sturen. Laatste bit (x15,y15) eerst.
; Tijd: 580uS
wp0

movlw d'32' ; wp0 is not part of the sequence
movwf teller
lfsr fsr2, 73h

n0 movff postdec2, waarde
call writedata
decfsz teller
goto n0
btfss SPG_stat,0
return
call send_wp0
return

;--------------------
; patch 1 (100h-11fh)
wp1

movlw d'32'
movwf teller
lfsr fsr2, 11fh

n1 movff postdec2, waarde
call writedata
decfsz teller
goto n1
btfss SPG_stat,0
return
call send_wp1
return
… …etc… (wp2-wp31)

;--------------------------------------
; patch 32 (4e0-4ff)
wp32

movlw d'32'
movwf teller
lfsr fsr2, 4ffh

n32 movff postdec2, waarde
call writedata
decfsz teller
goto n32

Page 94

Appendix I 19
btfss SPG_stat,0
return
call send_wp32
return

;--
; subroutine write data aanroepen met 'waarde'
writedataportc,0 ; geen carry dus nul

goto write_1
write_0

bsf portc,0 ; wel carry, dus een een
write_1

nop
bsf portc,1 ; shift Clk SHCP
nop ; schuift op pos. flank
bcf portc,1
decfsz bitcnt
goto write_x
return

;----------------------------------
; Trigger (a2) klokken op timer
; Storage clock AD75019
trigger

bsf portc,2 ; Storage Clock
nop
bcf portc,2
nop
bsf portc,2
return

;__
; Send routines
;__
; -----------------------------
; OSC send wp0
; /w1 ,iii iiii ii000 values (9 integers)
; -----------------------------
send_wp0

call sendslash
movlw a'w'
movwf txreg
call txwait
movlw a'0' ; preset 0 is de active preset en maakt geen
movwf txreg ; deel uit van de sequence
call txwait ; vandaar een aparte header en niet op basis
movlw 0x00 ; van a_preset (variabele)
movwf txreg
call txwait
movlw 0x2c
movwf txreg
call txwait
call send_i
call send_control
lfsr fsr1, 54h
movlw d'32'
movwf teller

t0 movff postinc1, txreg
call txwait
decfsz teller
goto t0
call send_oscend
return

; -----------------------------
; OSC send wp1
; /01 ,iii iiii ii000 values (9 integers)
; -----------------------------
send_wp1

call sendslash
movlw a'0'
movwf txreg
call txwait
movlw a'1'
movwf txreg
call txwait
call send_nulcomma
call send_i

Page 95

Appendix I 20
call send_control
lfsr fsr2, 100h
movlw d'32'
movwf teller

st1 movff postinc2, txreg
call txwait
decfsz teller
goto st1
call send_oscend
return

; -----------------------------
; OSC send 02
; /02 ,iii iiii ii000 values (9 integers)
; -----------------------------
send_wp2

call sendslash
movlw a'0' ;0
movwf txreg
call txwait
movlw a'2' ;2
movwf txreg
call txwait
call send_nulcomma
call send_i
call send_control
lfsr fsr2, 120h
movlw d'32'
movwf teller

st2 movff postinc2, txreg
call txwait
decfsz teller
goto st2
call send_oscend
return
… …etc… (send_wp3 - send_p31)

; -----------------------------
; OSC send wp32
; /32 ,iii iiii ii000 values (9 integers)
; -----------------------------
send_wp32
 call sendslash

movlw a'3'
movwf txreg
call txwait
movlw a'2'
movwf txreg
call txwait
call send_nulcomma
call send_i
call send_control
lfsr fsr2, 4e0h
movlw d'32'
movwf teller

st32
movff postinc2, txreg
call txwait
decfsz teller
goto st32
call send_oscend
return

;---
; send de slash
sendslash

movlw a'/'
movwf txreg
call txwait

 return

Page 96

Appendix I 21
;---
; send 1 x 0 en ','
send_nulcomma

movlw 0x00
movwf txreg
call txwait
movlw 0x2c
movwf txreg
call txwait
return

;---------------------------------
; send 9 x i
send_i

movlw d'9' ; send 9 times ‘i’
movwf teller ; en aanvullen met

i9 movlw 0x69 ; 69 = ascii voor i
movwf txreg
call txwait
decfsz teller
goto i9
movlw 0x00
movwf txreg
call txwait
movlw 0x00
movwf txreg
call txwait
return

;-------------------------------------
; send control byte
send_control

lfsr fsr1, 50h ; inhoud contrle byte versturen
movff indf1, txreg
call txwait
lfsr fsr1, 51h
movff indf1, txreg
call txwait
lfsr fsr1, 52h
movff indf1, txreg
call txwait
lfsr fsr1, 53h
movff indf1, txreg
call txwait
return

;--------------------------------------
; osc-end byte send
send_oscend

movlw 0x00 ; aanvullen met 2 x 00
movwf txreg
call txwait
movlw 0x00
movwf txreg
call txwait
movlw 0xff ; send char FF en FF
movwf txreg
call txwait
movlw 0xff
movwf txreg
call txwait
return

;--
; /cf retour
; ---
retour_config
 movlw a'/' ; /cd0

movwf txreg
 call txwait

movlw a'c'
 movwf txreg
 call txwait
 movlw a'd'
 movwf txreg
 call txwait
 movlw 0x00
 movwf txreg
 call txwait

Page 97

Appendix I 22
movlw a','

 movwf txreg
 call txwait

movlw a'i'
 movwf txreg
 call txwait
 movlw 0x00
 movwf txreg
 call txwait
 movlw 0x00
 movwf txreg
 call txwait
 lfsr fsr2, 88h ;89 (timer high) /cf byte 2
 movff postinc2, txreg
 call txwait
 movff postinc2, txreg
 call txwait
 movff postinc2, txreg ;8a (timer low) / cf byte 1
 call txwait
 movff postinc2, txreg ;8b (timer low) / cf byte 1
 call txwait

return
; --
; send routine RS232
;---
txwait

btfss pir1,4 ; check of zendregister leeg is (1= register leeg)
goto txwait ; als register 0 (vol) is
return

;--
; Write active preset id to 5 x LED
; portb,5 data / portb,7 clock / portb,6 shift clock
;--
writeled ; write 5 x leds
 movff a_preset, tmpdisp

movlw d'8'
movwf ledcnt

wled_x
rlcf tmpdisp
bc wled_0 ; branch if carry
bcf portb,5 ; geen carry dus nul
goto wled_1

wled_0
bsf portb,5 ; wel carry, dus een 1

wled_1
nop
bsf portb,7 ; Clock
nop ; schuift op pos. flank
bcf portb,7
decfsz ledcnt
goto wled_x

 bsf portb,6 ; shiftclock
 nop
 bcf portb,6

return
; --
waitxs
 movlw 0xff ; main counter v1

movwf var1
 movlw 0xff ; second couner v2
 movwf var2 ; time is V1 x V2 x V3 instruction cycle
 movlw 0x04 ; delay is nu ongeveer 100mS
 movwf var3
dl1 decfsz var1
 goto dl1
 movlw 0xff
 movwf var1
dl2 decfsz var2
 goto dl1
 movlw 0xff
 movwf var2
dl3 decfsz var3
 goto dl2
 return

end

Page 98

Appendix J

Technical specifications SPG (Linked to Assembly version 85)

Powersupply The SPG needs +15V (120mA), -15V(120mA), +5V(250mA) and GND.
The power supply should be part of the system and I used the ‘Traco-Power TML 15515’
for the power-supply. The euro-rack version (SPG model 6) can be connected to the
power supply of the Doepfer A-100 system.

Inputs and outputs The matrix, the AD75019 from Analog Devices, can switch audio
signals between -12V and +12V. Higher values will cause distortion. The opamps
(NE5532 and TL072) are working on the same power-rail from -12V to +12V.

Control voltages general: In the inside of the SPG all digital signals are +5V or 0V. Also
the PIC18F2523 microcontroller with its Analog to Digital convertor (ADC) can only
handle 0-5V. Since there are a lot of different standars regarding the control voltages and
modulair synth’s, the SPG models have some modifications on board to re-scale these
values to the appropriate values.

CV input model 2, model 3 and model 6 (euro-rack): These inputs can take -5V to +5V
on the CV input. This is the audio standard from Doepfer (A-100 set). The value will be
re-scaled internally from 0 to 5V.

Trigger input model 2, model 3 and model 6 (euro-rack): This input can handle 0-12V.
The value will be re-scaled from 0 to 5V.

Max/Msp patch. The Max/Msp patch can be downloaded from http://www.ipson.nl. The
patch is created with Max/Msp version 7.1

Page 99

Bibliography

(1999, Rev C). Analog Devices AD75019 Datasheet.

Erica synths. Retrieved 1-5-2017, from http://www.ericasynths.lv/en/shop/eurorack-
modules/by-functions/sequencers/matrix-mixer/

(2014). Lantronics Xport Embedded Device Server Data sheet. (910-8151)

(2006). Microchip PIC18F2325 Datasheet. 390.

Chamberlin, H. & Chamberlin, H. (1980). Musical Applications Of Microprocessors.
RochellePark,N.J.: Hayden Book Co.

Bryan Mayton, Gershon Dublon, Nicholas Joliat (2012). Patchwerk: Multi-User
Network Control of a Massive Modualr Synthesizer.

F. van Herwijnen, H Leegwater (1997). Poly-Technisch zakboekje. (48e druk ed.) Arnhem:
Koninklijke PBNA.

A.J. van den Broek (2010 - 2017). Technology for Art and Education. Retrieved 21-3-2017,
from http://www.ipson.nl

Horowitz, P. & Hill, W. (1989). The Art of Electronics. (2nd ed. ed.) Cambridge: Cambridge
University Press.

Page 100

Endnotes

1 Kees Tazelaar (1962) followed courses in Sonology in Utrecht and The Hague, and later studied
composition under Jan Boerman at the Royal Conservatoire. He has been teaching at the Institute of
Sonology since 1993 and has been head of the institute since 2006. His electronic music features a
combination of formalisation, richness of sound and a compositional approach to sound spatialisation
(sonology.org)
2 Jo Scherpenisse (1938) worked as a head of the Electronics workshop and as technician for the Institute of
Sonology from 1965-2003.
3 MIDI: Musical Instrument Digital Interface, is a technical standard that describes a protocol or digital
interface and allows a wide variety of musical instruments and/or computers to connect and communicate
with one another (Wiki).
4 Open Sound Control (OSC) is a protocol for communication among computers, sound synthesizers, and
other multimedia devices that are optimized for modern networking technology. Bringing the benefits of
modern networking technology to the world of electronic musical instruments, OSC's advantages include
interoperability, accuracy, flexibility, and enhanced organization and documentation (Wiki).
5 Karlheinz Stockhausen Studio is the main studio of the Composition department of the Royal
Conservatoire and a workshop for composers.
6 WMD is a manufacturer of music hardware including Modular Synthesizers, Guitar Pedals, and stand
alone music instruments. https://www.wmdevices.com/products/sequential-switch-matrix
7 RS-232 is a standard serial data communication protocol used amongst computers and peripherals.
8 Microchip datasheet, or manual. Microchip technology 2006 DS39755A
9 CMOS. Complementary metal–oxide–semiconductor, abbreviated as CMOS is a technology for
constructing integrated circuits (Wiki)
10 Reduced Instruction Set Controller (RISC). The general concept is that of a computer that has a small set
of simple and general instructions, rather than a large set of complex and specialized instructions (Wiki).
11 Eusart : Enhanced Universal Asynchronous Receiver / Transmitter. It is a type of a serial interface device
that can be programmed to communicate asynchronously or synchronously (Wiki).
12 Operational Amplifier, or Opamp is a DC coupled high-gain electronic voltage amplifier with a differential
input and, usually, a single ended output (Wiki)
13 A Spectrum Analyzer measures the magnitude of an input signal versus frequency within the full
frequency range of the instrument. The primary use is to measure the power of the spectrum of known and
unknown signals (Wiki).
14 ASCII abbreviated from American Standard Code for Information Interchange, is a character encoding
standard. It represent text in computers, telecommunication equipment, and other devices.
15 Low Latency (LoLa) software. A Low Latency audio visual streaming system developed by the
‘Conservatorio di musica Giuseppe Tartini, in Triest.
16 http:/www.ipson.nl. Internet Protocol Sonology. Technology for Art and Education, created and
maintained by Lex van den Broek.

