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When it comes to simulation, at the heart of every algorithm
lie the developer’s choices made about how to perform numerical
integration. That is, how the problem of calculating the
definite integral of a general function f between two limits
a < b ∫ b

a
f (x )dx (1)

is solved. This problem is central in computational physics,
the research field dedicated to developing and analysing
numerical operations to solve systems of differential equations.
In this context, the above operation is called is called
quadrature to distinguish it from the integration process
of analytically solving (i.e. formulating the mathematical
equations which satisfy) the above equation.1

Many different methods have been devised to tackle the
problem, each having different strength and weaknesses. The
most important aspect of these numerical operations is that
all these methods are approximations and thus affected by
error. The understanding of how this error affects the
found numerical solution identifies two distinguishing
characteristics of each method: its order, its stability,
and the computational effort it needs:

• the order of a method indicates how big the error of the
method is with respect to the segment length b − a : higher
order means the method produces smaller errors;

• the stability of the method refers to the property of the
algorithm of magnifying (instability) or not (stability)
the above error when it is repeatedly applied;

• the computational effort refers to the number of operations
needed by the algorithm to calculate the result. Specially
in a framework (like henri (see ??), where quadrature
operations are performed in real-time at audio rate,
this aspect plays an important role. In general, less
computational effort means smaller order and therefore
worse approximations; ; therefore, given a particular
numerical problem, finding a good balance between these
two aspects, approximation and effort, is a central task
for the programmer / researcher.
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In general we are dealing with initial value problems for
ordinary differential equations: meaning that we are looking
for x (t ) functions which are solutions to

ẋ (t ) = f (x (t )) (2)

given the value
x (t0 = 0) = x0 (3)

for some initial time t0. It is easy to see that this kind
of problem reduces to a similar operation as in eq 1 as we
need to integrate f (x ) in order to find x (t ). For instance,
This kind of if we are given the momentum of a particle and
its position as time t0 and wish to know it position at some
later time, we are dealing with this kind of problem. If
the function f (x (t )) is a continuous function, x (t ) is also
continuous and can therefore be expressed in terms of its
derivatives ẋ , ẍ , . . . using a Taylor series to expand it in
the neighbourhood of t = 0:

x (t ) = x0 + ẋ t + ẍ
t 2

2!
+
...x

t 3

3!
+ . . . (4)

where the derivatives are evaluated at t = 0.
Specifically we are interested in the value of x (t ) at

particular values of t that are integer multiples of some
fixed step h :

xn = x (t = nh ) fn = f (xn ) n = 0, ±1. ± 2, . . . (5)

e.g., h could be, as in the case of henri, the time interval
between two audio samples, 1/44100 = 2.26e −5 seconds for a
44100Hz sampling rate. The above expansion in eq 4 becomes
at nt = ±1

x±1 = x0 ± ẋ0h + ẍ0
h 2

2
+ O (h 3

) (6)

where O (h 3) stands for the terms of order h 3 or higher.
Assuming that x and its derivatives are all approximately
of the same order of magnitude, as is the case in many
physical systems, these higher order terms will get smaller
and smaller for higher powers if h is chosen small enough.
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Figure 1: In blue the region in
the complex plane of analytical
stability of the solution of
equation 11

From the previous equation, focusing only on the lower
order terms we can easily derive the forward and backward
difference formulas :

ẋ0 ≈
x1 − x0

h
+ O (h ) (7)

ẋ0 ≈
x0 − x−1

h
+ O (h ) (8)

Equation 7 thus readily leads to Euler’s method, also called
the forward Euler method, the simplest of all quadrature
algorithms, which for any n and n + 1 and using eq 2 becomes

xn +1 − xn

h
+ O (h ) = fn (9)

and therefore
xn +1 = xn + fn h + O (h 2

) (10)

which gives us a method for calculating the next step of the
trajectory x (t ) given xn . On the one hand, this method has
a very low computational effort and thus is very attractive
for time-critical applications in audio synthesis. However,
on the other hand it is neither very accurate (the step’s
error is just of second order i.e., O (h 2)) nor it is very
stable.

The numerical stability of a method is established by
applying the method to the numerical solution of a simple
differential equation2:

ẋ = λx (11)

which has the analytical solution

x = e λt x0 (12)

with λ a complex number. x0 = 1 usually. If Re {λ} < 0 the
solution is analytically stable as all possible trajectories
remain bounded as time tends to infinity (see figure 1).

Applying the forward Euler method to the numerical solution
of equation 11 thus using equation 10 we get the following
iterative rule:

x1 = x0 + λhx0 = (1 + λh )x0

x2 = x1 + λhx1 = (1 + λh )x1 = (1 + λh )
2x0

x3 = (1 + λh )
3x0

...

xn = (1 + λh )
n x0 (13)
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Figure 2: Region of numerical
stability of the forward Euler
method in the complex plane λh .

Equation 13 describes a stable system for n →∞ if

|1 + λh | < 1 (14)

which is a disc of radius 1 in the complex plane of λh as
depicted in figure 2. As we can see, the region of numerical
stability of the method is very small and does not cover the
whole region of stability the analytical solution has. That
is, the forward Euler method does a poor job in approximating
the analytical solution.

This can be demonstrated with an example. We can, for
example, consider the equation 11 with k = −2.3 and x0 =

1, which gives the stable analytical solution x = e −2.3t .
Applying the forward Euler method to this problem and choosing
h = 0.7 we would be in the stability region as equation 13
indicates. As depicted in figure 3, after a short initial
oscillating region, the method would be stable. Choosing
instead h = 1 would mean being outside the stability region
and would therefore be unstable. The method would produce
oscillating solutions growing in amplitude, and is thus
extremely sensitive to the right choice of the step h —
which should be sufficiently small. This instability is
particularly evident in oscillatory solutions to equation
11, i.e., when Im {k } 6= 0. These are of particular interest
to us: in this case, even with a very small step size with
respect to the frequency of the system, the method would
always be unstable, and the energy of the system would grow
exponentially.

Taking equation 8 instead would lead to to a different
iterative method, known as backward or implicit Euler :

xn +1 − xn

h
+ O (h ) = fn +1 (15)

and therefore
xn +1 = xn + fn +1h + O (h 2

) (16)

Even if this method seems very similar to the previous, it
is exhibits substantial differences. The numerical stability
analysis of this method, applying the previous process,
would lead to:

x1 = x0 + λhx1 ⇒ x1 =
1

(1 + λh )
x0

x2 = x1 + λhx2 ⇒ x2 =
1

(1 + λh )
x1 =

1
(1 + λh )2

x0

...

xn =
1

(1 + λh )n
x0 (17)
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3 Figure 3: Plot of the solution
to the differential equation
ẋ = −2.3x : in green the exact
solution x = e −2.3t , in blue
the solution computed with the
forward Euler method and h = 0.7,
in orange the solution computed
with the forward Euler method and
h = 1 which is unstable
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Figure 4: Region of numerical
stability of the backward Euler
method in the complex plane λh .

which would be stable if

1
|1 + λh |

< 1 (18)

As shown in figure 4, the shape of the stability region of
this method is very different to that in the former method.
As can be seen, this method is good for approximating solutions
for the stable region of the analytical solution. It produces
a stable solution even where the analytical solution gives
unstable (i.e. growing) solutions in the complex half plane
Re {λ} > 0

Furthermore, the method, as with all other implicit methods,
presents an ulterior difficulty. In fact, reformulating
equation 16 taking into account that fn = f (xn ), we see

xn +1 = xn + f (xn +1) (19)

that the term xn +1, which we want to find, is on both sides
of the equation: this is the fundamental characteristic of
all implicit methods. As a consequence, one needs to solve
an algebraic equation in the unknown xn +1: this problem can
be reformulated as to find the roots of the function g (xn +1):

g (xn +1) = xn +1 − xn − f (xn +1) = 0 (20)

that is the points xn +1 for which this function is zero.
This can in general be a very difficult problem to solve
numerically as f could be any non-linear function. Usually
this kind of problem is solved with iterative methods, such
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as the Newton-Raphson method which drastically increase the
computational effort. However, neither the Euler methods
nor an iterative method are suited for implementation in
a software framework that needs to perform fast and stable
(i.e., at audio rate) numerical integration.

Of course, the forward and backward Euler are the most
simple and error prone numerical methods; still those methods
show the basis on which all integration computational methods
are constructed. The methods that tend to produce better
results are constructed using two principal paths.

Linear multistep methods (also known as the { Adam-Bashford
methods}) depart from a slightly different formulation, as
in equation 4 to compute x (t ). From equation 2

x (t1) = x (t0) +

∫ t1

t0
f (x (t ))dt (21)

that is, in discrete time steps:

xn +1 = xn +

∫ n +1

n
f (t )dt (22)

the derivation of these methods follows the idea to approximate
better the value of the integral of the function f by taking
into account its value at previous time steps and thus
producing linear, quadratic, cubic, etc. polynomial approximations
of f . This leads to a whole family of higher-order explicit
or implicit methods. As an example, the explicit methods
following the linear and cubic approximation of f would be
respectively:

xn +1 = xn + h
(
3
2

fn −
1
2

fn −1

)
xn +1 = xn + h

(
23
12

fn −
4
3

fn −1 +
5
12

fn −2

)
(23)

and the respective implicit methods would be:

xn +1 = xn + h
1
2

(fn + fn −1)

xn +1 = xn + h
(

5
12

fn +
2
3

fn −1 −
1
12

fn −2

)
(24)

The Runge-Kutta method family comprises widely used
numerical integration algorithms that use higher order
expansions of the the Taylor series in equation 4 to better
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approximate the integral of the function f . The so derived
second order method algorithm would be:

k = hf (xn )

xn +1 = xn + hf (xn +
1
2

k )

(25)

and the widely used fourth order method:

k1 = hf (xn )

k2 = hf (xn +
1
2

k1)

k3 = hf (xn +
1
2

k2)

k4 = hf (xn + k3)

xn +1 = xn +
1
6

(k1 + 2k2 + 2k3 + k4)

(26)

These methods can be very accurate and exhibit better stability
properties, but involve the computation of the value of the
function f multiple times for each time step.

In henri a different kind of integration scheme is used:
a symplectic scheme. This particular method can be used in
the numerical integration of a special class of problems
of the 1 equation, called Hamiltonian systems. These are
systems of coupled differential equations and grounded on
Newton’s second law:

m v̇ = F (x ) = −
dU (x )

dx
(27)

ẋ =
dv
dt

(28)

which describes how a mass under the influence of the force
F , or a potential field U accelerates. To understand these
methods, a small step backwards into theory is necessary.
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Hamiltonian systems are dynamical systems which can be
described with the Hamiltonian function, embodying Newton’s
second law of mechanics.3 These are of utmost interest in
physics: they are used to describe most systems found in
nature from planetary system to the motion of an electron
in an electromagnetic field. These equations depend on the
characteristics of the Hamiltonian function H , related to
position, velocity of the involved elements (masses), and
time. The special interest in physics for this function
derives from the fact that the Hamiltonian is for these
systems the sum of the kinetic and potential energies T and
U :4

H (q , p , t ) = T (p ) + U (q ) (29)

For instance, the Hamiltonian of the simple harmonic oscillator
would be:

H =
p 2

2m
+
1
2

kx 2 (30)

Thus, usually the Hamiltonian is the energy of the formulated
system and for closed systems, given the conservation of
energy, it is constant and time independent:

∂H
∂t

= 0 (31)

A principal characteristic of this function is that it
describes the evolution of the state of the dynamical system,
i.e., it describes how the coordinates q and p evolve
in time via the so called Hamilton equations, a system of
differential equations of the general form of equation 2:

ṗ = −
∂H
∂q

(32)

q̇ =
∂H
∂p

Considering the space spanned by the coordinates (q , p ), the
phase-space, the integration of the former equations results
in a so-called flow in this space. To any (continuous and
differentiable) Hamiltonian corresponds a flow φt , which
describes the time evolution of the system. Given any initial
coordinate in the phase-space (q0, p0), this returns to the
point (q , p ) to which the system would evolve at any time t :

φt : (q0, p0)→ (q (t ), p (t )) (33)

An important characteristic of this function is that, for
Hamiltonian systems, it is a so-called symplectic map meaning
that it is area preserving in the phase space. In other
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words, given a section of the phase space, transforming
this section with a symplectic map would translate it to
different section in the phase-space, which could be different
in form, but would have the same area (see figure 5).5

This quality of the Hamiltonian systems, which are the
systems we are mostly dealing with in rattle, is essentially
characterising this set of problems and is ultimately related
to fundamental principles of physics as Liouvilles’ theorem
and the principle of energy conservation.

It seems therefore obvious to ask that the symplecticity
property of the exact solutions of Hamiltonian systems
should also be embodied and respected by the numerical
integration methods.6 That is, any numerical method Φh

approximating the flow of the exact solution such that

(qn +1, pn +1) = Φh (qn , pn ) (34)

given any point (qn , pn ), should be a symplectic transformation.
None of the methods described above, whether explicit and
implicit, are symplectic independently from the order they
could reach. Nor, could any of the above methods be guaranteed
to respect fundamental characteristics of dynamical systems
as the conservation of energy. This can be depicted on the
basis of the Euler methods we introduced above. Recalling
the explicit Euler method, we know it would tend to expand
the energy of the system (solutions grow in energy) and the
section of the phase space would grow in area. The implicit
Euler method, meanwhile, would tend to reduce it (solutions
would tend towards stability even if analytically they would
not). This behaviour is depicted graphically in figure 6,
considering the example phase space flow generated by the
Hamiltonian system of the simple pendulum.7

The symplecticity request leads to the formulation of a
new family of symplectic methods which guarantee conservation
of energy and area when applied to the integration of a
dynamical system. The first of these methods is the symplectic
Euler method, which can be equivalently expressed in two
ways:8

pn +1 = pn − h
∂H (qn , pn +1)

∂q
(35)

qn +1 = qn + h
∂H (qn , pn +1)

∂p
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Figure 6: Area preservation
behaviour of various numerical
integration methods on the basis
of the a phase space of the
simple pendulum. Same initial
areas (and values) are chosen

or

pn +1 = pn − h
∂H (qn +1, pn )

∂q
(36)

qn +1 = qn + h
∂H (qn +1, pn )

∂p

which, recalling that:

−
∂H (q , p )

∂q
= −
∂U (q )

∂q
= f (q ) (37)

where f (q ) is the force acting on the mass and

∂H (q , p )

∂p
=

p
m

= v (38)

the former reduce to

pn +1 = pn + hf (qn ) (39)

qn +1 = qn + h
pn +1

m

and the equivalent:

qn +1 = qn + h
pn

m
(40)

pn +1 = pn + hf (qn +1)

That is, each of these methods uses an implicit method
for the evolution of one state variable and the explicit
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Figure 7: Solution to the
outer solar system as computed
with the explicit, implicit,
and symplectic Euler and
Strömer-Verlet methods. The
graphic is taken from the book
by E. Hairer: Geometric numerical
integration: structure-preserving
algorithms for ordinary
differential equations

method for the other. The performance of these two methods,
even if only of first order, is already clearly more stable
as exemplified in in figure 7.

One of the most far-reaching consequences of the symplecticity
of Hamiltonian systems is that a geometrical way of thinking
about the numerical integration of such systems’ evolution
is made possible. In fact, these integration methods are
usually also referred to as geometric integrators.

This geometric perspective is the basis of further development
of those methods, given the following observations:

• Composition : Numerical methods can be composed in the
same way functions can be composed. That is if Φh and
Ψh are two different numerical methods of order r and
s respectively for the same problem, their composition
Φ h

2
◦ Ψ h

2
is also a method Xh for the same problem with

order r + s .

• Symmetry : The exact flow of a dynamical system φt usually
satisfies the relation φ1

t = φt : This property is in
general not satisfied by the flow Φh of a numerical
method. The adjoint method Φ∗

h is defined as equal to
the inverse method with reversed time.

Φ∗
h = Φ−1

−h (41)

and a method is called symmetric if is is equal to its
adjoint Φ∗

h = Φh . Further, the adjoint of an adjoint
method is the original method (Φ∗

h )∗ = Φh and the adjoint
of a composition, if the composition of the single adjoint
methods is reversed in order (Φh ◦Ψh )∗ = Ψ∗

h ◦Φ∗
h . Symmetry
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Figure 8: The splitting of a flow
in two-dimensional phase space is
expressed as the sum of two more
simple flows
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is an important quality of flows which is related to
the reversibility of dynamical systems, a fundamental
characteristic of all conservative systems and is therefore
a quality that a numerical method should provide.

• Splitting : A flow in phase space, i.e., a vector field,
can be split into the sum of two (or more) simple flows
along one of the dimensions of the phase space. The total
flow is then the composition of the two flows (see figure
8). For instance, the first symplectic Euler method Φh

formulated in equation 40 could be split into two flows
φ[1]

h and φ[2]

h respectively along the p and q dimensions:

φ[1]

h

qn +1 = qn

pn +1 = pn + hf (qn )

φ[2]

h

qn +1 = qn +
h
m

pn

pn +1 = pn

so that
Φh = φ[1]

h ◦φ
[2]

h (42)

Combining principles of composition, symmetry, and splitting,
a general rule for the generation of symmetric symplectic
methods of high order can be formulated.9 As an example,
we can see the Euler method in equation 40, split into
two flows and compose with its adjoint, and simplified. We
obtain:

Φ∗
h
2
◦Φ h

2
= (φ[1]

h
2
◦φ[2]

h
2

)
∗ ◦ (φ[1]

h
2
◦φ[2]

h
2

)

= φ[2]
h
2
◦φ[1]

h
2
◦φ[1]

h
2
◦φ[2]

h
2

= φ[2]
h
2
◦φ[1]

h ◦φ
[2]
h
2

(43)
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This is a symmetric method of the second order. The above
equation may also be rewritten as:

qn +
1
2

= qn +
h
2m

pn

pn +1 = pn + hf (qn +
1
2
) (44)

qn +1 = qn +
1
2

+
h
2m

pn +1

This is also known as the Strömer-Verlet method.
By reapplying composition and splitting to the above

equation 43, we can deduce higher-order symmetric integration
schemes. Furthermore, these methods can be generalised and
be applied to multi-dimensional dynamical systems where
the flow of the system can be reformulated as a composition
of simple flows along each dimension. For instance, a n
dimensional dynamical system governed by the flow Φh :

ẋ1 = f1(x1, x2, . . . , xn )

ẋ2 = f2(x1, x2, . . . , xn )

...

ẋn = fn (x1, x2, . . . , xn )

can be reformulated as a splitting into n first-order flows

Φh = φ1
h ◦φ2

h ◦ · · · ◦φn
h

and therefore, using the adjoint, a second-order symmetric
method would be:

Φ∗
h
2
◦Φ h

2
= φn

h
2
◦ · · · ◦φ2

h
2
◦φ1

h ◦φ2
h
2
◦ · · · ◦φn

h
2

(45)

This is the integration method I used in the second formulation
of rattle for integrating arbitrary multi-dimensional dynamical
systems. To formulate a fourth-order symmetric and symplectic
integration method of the above, one would simply use composition
and write the method:

Φ∗
h
4
◦Φ h

4
◦Φ∗

h
4
◦Φ h

4
(46)

and so on for higher orders.


