
From Socrates to Expert Systems: The Limits of Calculative Rationality
Author(s): Hubert L. Dreyfus
Source: Bulletin of the American Academy of Arts and Sciences, Vol. 40, No. 4 (Jan., 1987),
pp. 15-31
Published by: American Academy of Arts & Sciences
Stable URL: http://www.jstor.org/stable/3823297 .

Accessed: 21/10/2014 07:56

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

American Academy of Arts & Sciences is collaborating with JSTOR to digitize, preserve and extend access to
Bulletin of the American Academy of Arts and Sciences.

http://www.jstor.org 

This content downloaded from 145.18.66.78 on Tue, 21 Oct 2014 07:56:30 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=amacad
http://www.jstor.org/stable/3823297?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Stated Meeting Report 

From Socrates to Expert Systems: 
The Limits of Calculative Rationality 

Hubert L. Dreyfus 

This year Artificial Intelligence (Al) is 
celebrating its thirtieth birthday; obviously 
an appropriate occasion for a retrospective 
evaluation. 

Al began auspiciously, with Allen Newell 
and Herbert Simon's work at RAND. Newell 
and Simon proved that computers could do 
more than calculate. They demonstrated 
that computers were physical symbol sys- 
tems whose symbols could be made to stand 
for anything, including features of the real 
world, and whose programs could be used 
as rules for relating these features. In this 
way computers could be used to simulate 
certain important aspects of intelligence. 
Thus the information-processing model of 
the mind was born. But this model of the 
mind as a symbol processor has run into 
trouble. Indeed, looking back over these 
thirty years, it seems that whereas practical 
Al is becoming more and more useful, the- 
oretical Al appears more and more to be a 
perfect example of what Imre Lakatos has 
called a "degenerating research program." 

Newell and Simon's early work on problem 
solving was impressive, and by 1970 Artifi- 
cial Intelligence had turned into a flour- 
ishing research program, thanks to a series 
of micro-world successes such as Terry 
Winograd's SHRDLU, a program that could 
respond to English-like commands by moving 
simulated, idealized blocks. The field had its 
own Ph.D. programs, professional societies 

References may be found in the original text of this com- 
munication. For a detailed treatment of the issues discussed, 
see Hubert Dreyfus and Stuart Dreyfus, Mind Over Machine: 
The Power of Human Intuition and Expertise in the Era of the 
Computer, The Free Press, 1986. 
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and gurus. It looked like all one had to do 
was extend, combine, and render more 
realistic the micro-worlds and one would 
have genuine artificial intelligence. Marvin 
Minsky, head of the MIT program, pre- 
dicted that "within a generation the problem 
of creating 'artificial intelligence' will be sub- 
stantially solved." 

Then, rather suddenly, the field ran into 
unexpected difficulties. The trouble started, 
as far as we can tell, with the failure of 
attempts to program children's story under- 
standing. The programs lacked the common 
sense of a four-year-old. And no one knew 
what to do about it. An old philosophical 
dream was at the heart of the problem. Al 
is based on an idea which has been around 
in philosophy since Descartes, that all 
understanding consists in forming and using 
appropriate symbolic representations. For 
Descartes these were complex descriptions 
built up out of primitive ideas or elements. 
Kant added the important idea that all con- 
cepts were rules. Frege showed that rules 
could be formalized so that they could be 
manipulated without intuition or interpre- 
tation. Given the nature of computers, Al 
took up the search for formal rules and 
representations. Common-sense under- 
standing had to be understood as some vast 
body of formalized propositions, beliefs, 
rules, facts and procedures. And it simply 
turned out to be much harder than one 
expected to formulate, let alone formalize, 
the required theory of common sense. It was 
not, as Minsky had hoped, just a question of 
cataloguing a few hundred thousand facts. 
The common-sense knowledge problem 
became the center of concern. Minsky's 
mood changed completely in the course of 
fifteen years. He told a reporter: "The Al 
problem is one of the hardest science has 
ever undertaken." 

Given this impasse, it makes sense to 
return to micro-worlds-domains isolated 
from everyday common-sense under- 
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standing-and at least try to develop theo- 
ries of such domains. This is actually 
happening-with the added realization that 
such isolated domains need not be games 
like chess nor micro-worlds like Winograd's 
blocks world but can be skill domains like 
disease diagnosis or spectrograph analysis. 

Thus, from the frustrating field of Al has 
recently emerged a new field called knowl- 
edge engineering, which by limiting its goals 
has applied this research in ways that actually 
work in the real world. The result is the so- 
called expert system, which has been the 
subject of recent cover stories in Business 
Week and Newsweek and Edward Feigen- 
baum's book The Fifth Generation: Artificial 
Intelligence and Japan's Computer Challenge to 
the World. According to a Newsweek headline: 
"Japan and the United States are rushing to 
produce a new generation of machines that 
can very nearly think." 

Feigenbaum, one of the original devel- 
opers of expert systems (who stands to profit 
greatly from this competition) spells out the 
goal: 

In the kind of intelligent system envisioned 
by the designers of the Fifth Generation, 
speed and processing power will be increased 
dramatically; but more important, the 
machines will have reasoning power: they 
will automatically engineer vast amounts of 
knowledge to serve whatever purpose 
humans propose, from medical diagnosis 
to product design, from management 
decisions to education. 

What the knowledge engineers claim to 
have discovered is that in areas which are 
cut off from everyday common sense and 
social intercourse, all a machine needs in 
order to behave like an expert are some gen- 
eral rules and lots of very specific knowl- 
edge. This specialized knowledge is of two 
types: 

The first type is the facts of the domain- 
the widely shared knowledge ... that is 
written in textbooks and journals of the 
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field .... Equally important to the practice 
of the field is the second type of knowledge 
called heuristic knowledge, which is the 
knowledge of good practice and good judg- 
ment in a field ... that a human expert 
acquires over years of work. 

Using all three kinds of knowledge Fei- 
genbaum developed a program called DEN- 
DRAL. It takes the data generated by a mass 
spectrograph and deduces from this data 
the molecular structure of the compound 
being analyzed. Another program, MYCIN, 
takes the results of blood tests such as the 
number of red cells, white cells, sugar in the 
blood, etc., and comes up with a diagnosis 
of which blood disease is responsible for this 
condition. It even gives an estimate of the 
reliability of its own diagnosis. In their 
narrow areas, such programs give impres- 
sive performances. They seem to confirm 
Leibniz's claim: 

[T]he most important observations and 
turns of skill in all sorts of trades and 
professions are as yet unwritten. This fact 
is proved by experience when, passing 
from theory to practice, we desire to 
accomplish something. Of course, we can 
also write up this practice, since it is at bottom 
just another theory more complex and 
particular .... 

And, indeed, isn't the success of expert 
systems just what one would expect? If we 
agree with Feigenbaum that: "almost all the 
thinking that professionals do is done by 
reasoning . . . " we can see that once com- 
puters are used for reasoning and not just 
computation they should be as good or 
better than we are at following rules for 
deducing conclusions from a host of facts. 
So we would expect that if the rules which 
an expert has acquired from years of expe- 
rience could be extracted and programmed, 
the resulting program would exhibit exper- 
tise. Again Feigenbaum puts the point very 
clearly: 
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[T]he matters that set experts aside from 
beginners, are symbolic, inferential, and 
rooted in experiential knowledge .... 
Experts build up a repertory of working 
rules of thumb, or "heuristics," that, com- 
bined with book knowledge, make them 
expert practitioners. 

Since each expert already has a repertory of 
rules in his mind, all the expert system 
builder need do is get the rules out and pro- 
gram them into a computer. 

This view is not new. In fact, it goes back 
to the beginning of Western culture, when 
the first philosopher, Socrates, stalked around 
Athens looking for experts in order to draw 
out and test their rules. In one of his earliest 
dialogues, The Euthyphro, Plato tells us of 
such an encounter between Socrates and 
Euthyphro, a religious prophet and so an 
expert on pious behavior. Socrates asks 
Euthyphro to tell him how to recognize 
piety: "I want to know what is characteristic 
of piety ... to use as a standard whereby to 
judge your actions and those of other men." 
But instead of revealing his piety-recog- 
nizing heuristic, Euthyphro does just what 
every expert does when cornered by Soc- 
rates. He gives him examples from his field 
of expertise, in this case mythical situations 
in the past in which men and gods have done 
things which everyone considers pious. Soc- 
rates persists throughout the dialogue in 
demanding that Euthyphro, then, tell him 
his rules for recognizing these cases as 
examples, but although Euthyphro claims 
he knows how to tell pious acts from impious 
ones, he cannot state the rules which gen- 
erate his judgments. Socrates ran into the 
same problem with craftsmen, poets and 
even statesmen. None could articulate the 
principles underlying his expertise. Socrates 
concluded that none of these experts knew 
anything and he didn't either. Not a prom- 
ising start for Western philosophy. 

Plato admired Socrates and saw his 
problem. So he developed an account of 
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what caused the difficulty. Experts, at least 
in areas involving non-empirical knowledge 
such as morality and mathematics, had, in 
another life, learned the principles involved, 
Plato said, but they had forgotten them. The 
role of the philosopher was to help such 
moral and mathematical experts recollect 
the principles on which they act. Knowledge 
engineers would now say that the rules 
experts-even experts in empirical 
domains-use have been put in a part of 
their mental computers where they work 
automatically. 

When we learned how to tie our shoes, we 
had to think very hard about the steps 
involved .... Now that we've tied many 
shoes over our lifetime, that knowledge is 
"compiled," to use the computing term for 
it; it no longer needs our conscious atten- 
tion. 

On this Platonic view, the rules are there 
functioning in the expert's mind whether he 
is conscious of them or not. How else could 
one account for the fact that the expert can 
perform the task? So nothing has changed. 
Only now 2000 years later, thanks to Feigen- 
baum and his colleagues, we have a new 
name for what Socrates and Plato were 
doing: knowledge acquisition research. 

But although philosophers and even the 
man in the street have become convinced 
that expertise is based on applying sophis- 
ticated heuristics to masses of facts, there 
are few available rules. As Feigenbaum 
explains: "[A]n expert's knowledge is often 
ill-specified or incomplete because the expert 
himself doesn't always know exactly what it 
is he knows about his domain." So the knowl- 
edge engineer has to help him recollect what 
he once knew: 

[An expert's] knowledge is currently 
acquired in a very painstaking way; indi- 
vidual computer scientists work with indi- 
vidual experts to explicate the expert's 
heuristics-to mine those jewels of knowl- 
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edge out of their heads one by one .... 
[T]he problem of knowledge acquisition is 
the critical bottleneck in artificial intelli- 
gence. 

When Feigenbaum suggests to an expert the 
rules the expert seems to be using, he gets 
a Euthyphro-like response: "That's true, but 
if you see enough patients/rocks/chip designs/ 
instrument readings, you see that it isn't true 
after all," and Feigenbaum comments with 
Socratic annoyance: "At this point, knowl- 
edge threatens to become ten thousand spe- 
cial cases." 

There are also other hints of trouble. Ever 
since the inception of Artificial Intelligence, 
researchers have been trying to produce 
artificial experts by programming the com- 
puter to follow the rules used by masters in 
various domains. Yet, although computers 
are faster and more accurate than people in 
applying rules, master-level performance 
has remained out of reach. 

Arthur Samuel's work is typical. In 1947, 
when electronic computers were just being 
developed, Samuel, then at IBM, decided to 
write a checker playing program. He elicited 
heuristic rules from checker masters and 
programmed a computer to follow these 
rules. 

The resulting checkers program is not 
only the first and one of the best experts 
ever built, but it is also a perfect example of 
the way fact turns into fiction in Al. Feigen- 
baum, for example, reports that "by 1961 
[Samuel's program] played championship 
checkers, and it learned and improved with 
each game." In fact, Samuel said in a recent 
interview at Stanford University, where he 
is a retired professor, that the program did 
once defeat a state champion but the cham- 
pion "turned around and defeated the pro- 
gram in six mail games." According to 
Samuel, after 35 years of effort, "the pro- 
gram is quite capable of beating any ama- 
teur player and can give better players a 
good contest." It is clearly no champion. 
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Samuel is still bringing in expert players for 
help but he "fears he may be reaching the 
point of diminishing returns." This does not 
lead him to question the view that the mas- 
ters the program cannot beat are using heu- 
ristic rules; rather, like Plato and Feigenbaum, 
Samuel thinks that the experts are poor at 
recollecting their compiled heuristics: "The 
experts do not know enough about the 
mental processes involved in playing the 
game." 

The same story is repeated in every area 
of expertise, even in areas unlike checkers 
where expertise requires the storage of 
large numbers of facts, which should give an 
advantage to the computer. In each area 
where there are experts with years of expe- 
rience the computer can do better than the 
beginner, and can even exhibit useful com- 
petence, but it cannot rival the very experts 
whose facts and supposed heuristics it is pro- 
cessing with incredible speed and unerring 
accuracy. 

In the face of this impasse, in spite of the 
authority and influence of Plato and 2000 
years of philosophy, we must take a fresh 
look at what a skill is and what the expert 
acquires when he achieves expertise. We 
must be prepared to abandon the traditional 
view that a beginner starts with specific cases 
and, as he becomes more proficient, abstracts 
and interiorizes more and more sophisti- 
cated rules. It might turn out that skill acqui- 
sition moves in just the opposite direction: 
from abstract rules to particular cases. Since 
we are all experts in many areas, we have the 
necessary data, so let's look and see how 
adults learn new skills. 

Stage 1: Novice 

Normally, the instruction process begins 
with the instructor decomposing the task 
environment into context-free features which 
the beginner can recognize without benefit 
of experience. The beginner is then given 
rules for determining actions on the basis of 
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these features, like a computer following a 
program. 

For purposes of illustration, let us con- 
sider two variations: a bodily or motor skill 
and an intellectual skill. The student auto- 
mobile driver learns to recognize such inter- 
pretation-free features as speed (indicated 
by his speedometer) and distance (as esti- 
mated by a previously acquired skill). Safe 
following distances are defined in terms of 
speed; conditions that allow safe entry into 
traffic are defined in terms of speed and 
distance of oncoming traffic; timing of gear 
shifts is specified in terms of speed, etc. 
These rules ignore context. They do not 
refer to traffic density or anticipated stops. 

The novice chess player learns a numeri- 
cal value for each type of piece regardless of 
its position, and the rule: "Always exchange 
if the total value of pieces captured exceeds 
the value of pieces lost." He also learns that 
when no advantageous exchanges can be 
found, center control should be sought, and 
he is given a rule defining center squares 
and one for calculating extent of control. 
Most beginners are notoriously slow players, 
as they attempt to remember all these rules 
and their priorities. 

Stage 2: Advanced Beginner 

As the novice gains experience actually 
coping with real situations, he begins to 
note, or an instructor points out, perspic- 
uous examples of meaningful additional 
components of the situation. After seeing a 
sufficient number of examples, the student 
learns to recognize them. Instructional 
maxims now can refer to these new situa- 
tional aspects recognized on the basis of 
experience, as well as to the objectively 
defined non-situational features recognizable 
by the novice. 

The advanced beginner driver uses (situ- 
ational) engine sounds as well as (non-situ- 
ational) speed in his gear-shifting rules. He 
shifts when the motor sounds like it is 

23 

This content downloaded from 145.18.66.78 on Tue, 21 Oct 2014 07:56:30 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


straining. He learns to observe the demeanor 
as well as position and velocity of pedestrians 
or other drivers. He can, for example, dis- 
tinguish the behavior of the distracted or 
drunken driver from that of the impatient 
but alert one. No number of words can take 
the place of a few choice examples in 
learning these distinctions. Engine sounds 
cannot be adequately captured by words, 
and no list of objective facts enables one to 
predict the behavior of a pedestrian in a 
crosswalk as well as can the driver who has 
observed many pedestrians crossing streets 
under a variety of conditions. 

With experience, the chess beginner learns 
to recognize over-extended positions and 
how to avoid them. Similarly, he begins to 
recognize such situational aspects of posi- 
tions as a weakened king's side or a strong 
pawn structure despite the lack of precise 
and universally valid definitional rules. 

Stage 3: Competence 

With increasing experience, the number 
of features and aspects to be taken account 
of becomes overwhelming. To cope with this 
information explosion, the performer learns, 
or is taught, to adopt a hierarchical view of 
decision-making. By first choosing a plan, 
goal or perspective which organizes the sit- 
uation and by then examining only the small 
set of features and aspects that he has 
learned are relevant given that plan, the per- 
former can simplify and improve his per- 
formance. 

A competent driver beginning. a trip 
decides, perhaps, that he is in a hurry. He 
then selects a route with attention to dis- 
tance and time, ignores scenic beauty, and 
as he drives he chooses his maneuvers with 
little concern for passenger comfort or for 
courtesy. He follows more closely than 
normal, enters traffic more daringly, occa- 
sionally violates a law. He feels elated when 
decisions work out and no police car appears, 
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and shaken by near accidents and traffic 
tickets. 

The Class A chess player, here classed as 
competent, may decide after studying a 
position that his opponent has weakened his 
king's defenses so that an attack against the 
king is a viable goal. If the attack is chosen, 
features involving weaknesses in his own 
position created by the attack are ignored as 
are losses of pieces inessential to the attack. 
Removal of pieces defending the enemy 
king becomes salient. Successful plans induce 
euphoria and mistakes are felt in the pit of 
the stomach. 

In both of these cases, we find a common 
pattern: detached planning, conscious 
assessment of elements that are salient with 
respect to the plan, and analytical rule- 
guided choice of action, followed by an 
emotionally involved experience of the out- 
come. 

The experience is emotional because 
choosing a plan, a goal or perspective is no 
simple matter for the competent performer. 
Nobody gives him any rules for how to 
choose a perspective, so he has to make up 
various rules which he then adopts or dis- 
cards in various situations depending on 
how they work out. This procedure is frus- 
trating, however, since each rule works on 
some occasions and fails on others, and no 
set of objective features and aspects corre- 
lates strongly with these successes and fail- 
ures. Nonetheless the choice is unavoidable. 
While the advanced beginner can hold off 
using a particular situational aspect until a 
sufficient number of examples makes iden- 
tification reliable, to perform competently 
requires choosing an organizing goal or per- 
spective. Furthermore, the choice of per- 
spective crucially affects behavior in a way 
that one particular aspect rarely does. 

This combination of necessity and uncer- 
tainty introduces an important new type of 
relationship between the performer and his 
environment. The novice and the advanced 
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beginner, applying rules and maxims, feel 
little or no responsibility for the outcome of 
their acts. If they have made no mistakes, an 
unfortunate outcome is viewed as the result 
of inadequately specified elements or rules. 
The competent performer, on the other 
hand, after wrestling with the question of a 
choice of perspective or goal, feels respon- 
sible for, and thus emotionally involved in, 
the result of his choice. An outcome that is 
clearly successful is deeply satisfying and 
leaves a vivid memory of the situation 
encountered as seen from the goal or per- 
spective finally chosen. Disasters, likewise, 
are not easily forgotten. 

Remembered whole situations differ in 
one important respect from remembered 
aspects. The mental image of an aspect is 
flat; no parts stand out as salient. A whole 
situation, on the other hand, since it is the 
result of a chosen plan or perspective, has a 
"three-dimensional" quality. Certain ele- 
ments stand out as more or less important 
with respect to the plan, while other irrele- 
vant elements are forgotten. Moreover, the 
competent performer, gripped by the situ- 
ation that his decision has produced, expe- 
riences the situation not only in terms of 
foreground and background elements but 
also in terms of opportunity, risk, expecta- 
tion, threat, etc. As we shall soon see, if he 
stops reflecting on problematic situations as 
a detached observer, and stops thinking of 
himself as a computer following better and 
better rules, these gripping, holistic experi- 
ences become the basis of the competent 
performer's next advance in skill. 

Stage 4: Proficiency 

Considerable experience at the level of 
competency sets the stage for yet further 
skill enhancement. Having experienced many 
situations, chosen plans in each, and having 
obtained vivid, involved demonstrations of 
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the adequacy or inadequacy of the plan, the 
performer involved in the world of the skill, 
"rnotices," or "is struck by' a certain plan, 
goal or perspective. No longer is the spell of 
involvement broken by detached conscious 
planning. 

Since there are generally far fewer "ways 
of seeing" than "ways of acting," after under- 
standing without conscious effort what is 
going on, the proficient performer will still 
have to think about what to do. During this 
thinking, elements that present themselves 
as salient are assessed and combined by rule 
to produce decisions about how best to 
manipulate the environment. 

On the basis of prior experience, a pro- 
ficient driver approaching a curve on a rainy 
day may sense that he is traveling too fast. 
Then, on the basis of such salient elements 
as visibility, angle of road bank, criticalness 
of time, etc., he decides whether to take his 
foot off the gas or to step on the brake. 
(These factors would be used by the compe- 
tent driver to decide that he is speeding.) 

The proficient chess player, who is classed 
a master, can recognize a large repertoire of 
types of positions. Recognizing almost 
immediately and without conscious effort 
the sense of a position, he sets about calcu- 
lating the move that best achieves his goal. 
He may, for example, know that he should 
attack, but he must deliberate about how 
best to do so. 

Stage 5: Expertise 

The proficient performer, immersed in 
the world of his skillful activity, sees what 
needs to be done, but decides how to do it. 
With enough experience with a variety of 
situations, all seen from the same perspec- 
tive but requiring different tactical deci- 
sions, the proficient performer gradually 
decomposes this class of situations into sub- 
classes, each of which share the same deci- 
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sion, single action, or tactic. This allows the 
immediate intuitive response to each situa- 
tion which is characteristic of expertise. 

The expert chess player, classed as an 
international master or grandmaster, in 
most situations experiences a compelling 
sense of the issue and the best move. Excel- 
lent chess players can play at the rate of 5-10 
seconds a move and even faster without any 
serious degradation in performance. At this 
speed they must depend almost entirely on 
intuition and hardly at all on analysis and 
comparison of alternatives. My brother, 
Stuart, recently performed an experiment 
in which an international master, Julio 
Kaplan, was required rapidly to add num- 
bers presented to him audibly at the rate of 
about one number per second, while at the 
same time playing five-second-a-move chess 
against a slightly weaker, but master level 
player. Even with his analytical mind com- 
pletely occupied by adding numbers, Kaplan 
more than held his own against the master 
in a series of games. Deprived of the time 
necessary to see problems or construct 
plans, Kaplan still produced fluid and coor- 
dinated play. 

Kaplan's performance seems somewhat 
less amazing when one realizes that a chess 
position is as meaningful, interesting and 
important to a professional chess player as 
a face in a receiving line is to a professional 
politician. Almost anyone can add numbers 
and simultaneously recognize and respond 
to faces, even though each face will never 
exactly match the same face seen previously, 
and politicians can recognize thousands of 
faces, just as Julio Kaplan can recognize 
thousands of chess positions similar to ones 
previously encountered. The number of 
classes of discriminable situations, built up 
on the basis of experience, must be immense. 
It has been estimated that a master chess 
player can distinguish roughly 50,000 types 
of positions. 

Automobile driving probably involves the 
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ability to discriminate a similar number of 
typical situations. The expert driver, gen- 
erally without any awareness, not only knows 
by feel and familiarity when an action such 
as slowing down is required, but he knows 
how to perform the action without calcu- 
lating and comparing alternatives. He shifts 
gears when appropriate with no awareness 
of his acts. What must be done, simply is 
done. 

It seems that a beginner makes inferences 
using rules and facts just like a heuristically 
programmed computer, but that with talent 
and a great deal of involved experience the 
beginner develops into an expert who intu- 
itively sees what to do without applying 
rules. The tradition has given an accurate 
description of the beginner and of the 
expert facing an unfamiliar situation, but 
normally an expert does not reason. He does 
not solve problems. He does what normally 
works and, of course, it normally works. 

Given this account of the five stages of skill 
acquisition, we can understand why the 
common-sense knowledge problem has 
proved to be so hard. Common-sense under- 
standing might well be everyday know-how. By 
know-how I do not mean propositional 
knowledge nor even procedural rules, but 
knowing what to do in a vast number of 
special cases. 

Common-sense physics, for example, has 
turned out to be extremely hard to spell out 
in a set of facts and rules. When one tries, 
one either requires more common sense to 
understand the facts and rules one finds or 
else one produces formulas of such com- 
plexity that it seems highly unlikely they are 
in a child's mind. It just may be that the 
problem of finding a theory of common sense 
in physics is insoluble. By playing with all 
sorts of liquids and solids for several years, 
the child may simply have developed an 
ability to discriminate thousands of typical 
cases of solids, liquids, etc., each paired with 
a typical skilled response to its typical behavior 
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in typical circumstances. There may be no 
theory of common-sense physics more simple 
than a list of all such typical cases and even 
such a list is useless without a similarity-rec- 
ognition ability. 

Our phenomenology of skill acquisition 
also enables us to understand why the 
knowledge engineers from Socrates, to 
Samuel, to Feigenbaum have had such trouble 
getting the expert to articulate the rules he 
is using. The expert is simply not following 
any rules! He is doingjust what Feigenbaum 
feared he might be doing-discriminating 
thousands of special cases. This in turn 
explains why expert systems are never as 
good as experts. If one asks an expert for 
rules, one will, in effect, force the expert to 
regress to the level of a beginner and state 
the rules he still remembers but no longer 
uses. If one programs these rules on a com- 
puter, one can use the speed and accuracy 
of the computer and its ability to store and 
access millions of facts to outdo a human 
beginner using the same rules. But no 
amount of rules and facts can capture the 
knowledge an expert has when he has stored 
his experience of the actual outcomes of tens 
of thousands of situations. 

The knowledge engineer might still say 
that in spite of appearances the mind and 
brain must be reasoning-making millions 
of rapid and accurate inferences like a com- 
puter. After all, the brain is not "wonder 
tissue" and how else could it work? But there 
are other models for what might be going 
on in the hardware that make no use of the 
sort of symbols Newell and Simon have in 
mind. That is, they do not use symbols that 
correspond to recognizable features of the 
world and rules that represent these fea- 
tures' relationships. 

Researchers who call themselves "new 
connectionists," are building devices and 
writing programs that operate somewhat 
like neural nets. These parallel distributed 
processing systems can recognize patterns 
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and detect similarity and regularity without 
using inferences or isolated features at all. 
In a connectionist machine, the states of the 
machine cannot be interpreted as symbols 
representing invariant features of the skill 
domain. These connections models offer 
new hope for the success of Al once the field 
gives up the Newell/Simon hypothesis that 
to produce intelligence, computers must be 
used as physical symbol systems. Thanks to 
connectionism, computers may someday 
exhibit skill, and Al researchers may someday 
solve-or better, by-pass-the common-sense 
knowledge problem they have inherited 
from philosophy. 

Once one gives up the assumption that 
intuitive experts must be making inferences, 
and admits the role of involvement and intu- 
ition in the acquisition and application of 
skills, one will have no reason to cling to the 
heuristic program as a model of human 
intellectual operations. Feigenbaum's claim 
that "we have the opportunity at this moment 
to do a new version of Diderot's Encyclopedia, 
a gathering up of all knowledge-not just 
the academic kind, but the informal, exper- 
iential, heuristic kind"; as well as his boast 
that thanks to Knowledge Information Pro- 
cessing Systems we will soon have "access to 
machine intelligence-faster, deeper, better 
than human intelligence" can both be seen 
as a late stage of Socratic thinking, with no 
rational or empirical basis. In this light those 
who claim we must begin a crash program 
to compete with the Japanese Fifth Gener- 
ation Intelligent Computers can be seen to 
be false prophets blinded by Socratic 
assumptions and personal ambition-while 
Euthyphro, the expert on piety who kept 
giving Socrates examples instead of rules, 
turns out to have been a true prophet after 
all. 

Hubert L. Dreyfus is Professor of Philosophy at 
the University of California at Berkeley. His com- 
munication was presented at the 1671st Stated 
Meeting, held in Cambridge on October 8, 1986. 
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