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Effect of Prestimulus Alpha Power, Phase, and
Synchronization on Stimulus Detection Rates in a
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Spontaneous oscillations measured by local field potentials, electroencephalograms and magnetoencephalograms exhibit a pronounced
peak in the alpha band (8 –12 Hz) in humans and primates. Both instantaneous power and phase of these ongoing oscillations have
commonly been observed to correlate with psychophysical performance in stimulus detection tasks. We use a novel model-based
approach to study the effect of prestimulus oscillations on detection rate. A previously developed biophysically detailed attractor network
exhibits spontaneous oscillations in the alpha range before a stimulus is presented and transiently switches to gamma-like oscillations on
successful detection. We demonstrate that both phase and power of the ongoing alpha oscillations modulate the probability of such state
transitions. The power can either positively or negatively correlate with the detection rate, in agreement with experimental findings,
depending on the underlying neural mechanism modulating the oscillatory power. Furthermore, the spatially distributed alpha oscilla-
tors of the network can be synchronized by global nonspecific weak excitatory signals. These synchronization events lead to transient
increases in alpha-band power and render the network sensitive to the exact timing of target stimuli, making the alpha cycle function as
a temporal mask in line with recent experimental observations. Our results are relevant to several studies that attribute a modulatory role
to prestimulus alpha dynamics.

Introduction
Alpha oscillations are a prominent feature of spontaneous corti-
cal activity and manifest themselves as a clear peak in power
spectra of electroencephalogram (EEG) (Berger, 1929; for review,
see Klimesch et al., 2007), magnetoencephalogram (MEG) (Co-
hen, 1972; Hari and Salmelin, 1997), and local field potential
(LFP) recordings (Bollimunta et al., 2008) in human and primate
cortex. In the past, the rhythm was believed to be of exclusively
thalamic origin (Andersen and Andersson, 1968). More recently
however, cortical sources of alpha oscillations have also been
found (Bollimunta et al., 2008). The alpha rhythm has commonly
been observed during spontaneous and prestimulus conditions,
where its power is either positively (Linkenkaer-Hansen et al.,
2004; Zhang et al., 2008) or negatively (Thut et al., 2006;
Hanslmayr et al., 2007; Romei et al., 2008) correlated with psy-
chophysical performance, e.g., stimulus detection. LFP record-

ings have revealed that the laminar origin of the oscillatory source
is likely to be a distinguishing factor between these two modula-
tory effects (Bollimunta et al., 2008, 2011; Mo et al., 2011).

In addition, the phase of alpha oscillations at the stimulus
onset has also been found to modulate psychophysical perfor-
mance (Busch et al., 2009; Mathewson et al., 2009), and as a
result, the alpha cycle has been associated with a transition be-
tween relatively high and low excitation states. Consistently with
this idea, cortical pyramidal cell activity has indeed been shown to
be modulated by the phase of alpha oscillations (Haegens et al.,
2011).

Despite this pronounced role of alpha in perception, little is
known about the underlying neural mechanisms. Here, we adopt
a computational approach to examine the effect of prestimulus
alpha conditions on the performance of weak stimulus detection,
which to the best of our knowledge has not been done before. To
this end, we adapt our previously developed cortical attractor
network model (Lundqvist et al., 2006), which exhibits two types
of attractor states (Djurfeldt et al., 2008; Lundqvist et al., 2010).
The default state operates as an attractor and manifests itself by
unspecific low-rate firing with population oscillations in the al-
pha band. An external stimulus can transiently switch the net-
work to an active state where one of several coding attractors is
visited. Due to mechanisms of neural fatigue these attractors have
finite life-time (Lundqvist et al., 2006). Their activation is accom-
panied by elevated firing in the corresponding neural ensemble
and population oscillations in the gamma range. Our stimulus
induced change of state is thus congruent with discrete firing rate
changes (Bathellier et al., 2012) and stimulus induced alpha to
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gamma transitions (Fries et al., 2008) observed in vivo. We inter-
pret the activation of a stimulated coding attractor as successful
stimulus detection and study how the phase, power, and synchro-
nization of ongoing alpha oscillations modulate performance.

Materials and Methods
Network model. We used our biophysically detailed network model of
cortical layer 2/3 (Lundqvist et al., 2006, 2010; Djurfeldt et al., 2008),
implemented with version 7.1 of the parallel NEURON simulator (Car-
nevale and Hines, 2006). Analogously to our recent studies (Lundqvist et
al., 2011, 2012), we removed the regular spiking nonpyramidal cells be-
cause they did not have any qualitative impact on the phenomena studied
here and were not involved in generating the oscillatory dynamics. The
model had a modular organization with hypercolumns and minicol-
umns (Fig. 1A). These minicolumns do not necessarily correspond to
anatomical columns but rather to local subgroups of cells that tend to be
connected (Yoshimura et al., 2005; Kampa et al., 2006) and coactive
(Bathellier et al., 2012). Each layer 2/3 portion of a minicolumn con-
tained 30 pyramidal cells (Peters and Yilmaz, 1993). Each minicolumn
also included a rudimentary layer 4, with five pyramidal cells transmit-
ting simulated sensory input in a feedforward fashion to layer 2/3. The
connectivity was defined in terms of the probability of a cell in the pre-
synaptic population to be connected to a cell in the postsynaptic popu-
lation. Layer 4 cells were randomly connected to the layer 2/3 pyramidal
cells in the same minicolumn with the probability P � 0.5, whereas the layer
2/3 cells formed recurrent connections (P � 0.25) within each minicolumn.
All connections formed from one cell onto itself were removed. Every hyper-
column contained 49 such minicolumns and a cortical patch was composed
of 16 hypercolumns. Within each hypercolumn there was a pool of 49 basket
cells providing nonselective feedback inhibition across minicolumns.
Within a given hypercolumn pyramidal cells could connect to all basket cells
(with probability P � 0.7). The basket cells turn could connect to all pyra-
midal cells (P � 0.7). The local connectivity thus followed a scheme where
layer 2/3 pyramidals sharing the same layer 4 input tended to form local
assemblies, which were nonspecifically targeted by feedback inhibition (Yo-
shimura et al., 2005; Kampa et al., 2006). The hypercolumns were defined by
the extent of this feedback inhibition and thus �0.5 mm in diameter (Yuan
et al., 2011). Within this volume, the inhibitory feedback produced coherent
alpha oscillations during the default state of the network and gamma oscil-
lations during the active coding state.

Nonoverlapping cell assemblies were stored by means of selective
long-range excitatory connections (Muir et al., 2011) between minicol-
umns belonging to separate hypercolumns (Fig. 1B). These connections
were set up offline before simulations ensuring that each pattern con-
tained one minicolumn from every hypercolumn.

In a control study, we used two connected cortical patches, one acting
as a sensory patch and the other as an associative patch. They were iden-
tical copies with the only difference that the sensory patch connected
with feedforward connections to the associative patch. Pyramidal cells in
a minicolumn in the sensory patch only connected to pyramidal cells in
the twin minicolumn in the associative patch (P � 0.1, 0.7 mV excit-
atory postsynaptic potential; EPSP). The distance between the patches
was 1 cm.

In the detection tasks, 6 of 16 minicolumns belonging to a distributed
cell assembly were selectively stimulated for 30 ms via layer 4 input cells.
The latter were activated by Poisson spike trains and emitted 2–3 spikes
during the 30 ms of stimulation. The minicolumns were spread out on a
2-D square grid (Fig. 1B). All conduction delays were calculated assum-
ing a conduction speed of 0.5 m/s. Synaptic conductances and connec-
tivity were set to comply with biological data (Thomson et al., 2002; cf.
Lundqvist et al., 2006).

Cell and synapse model. The cells included in the model network were
pyramidal cells and soma targeting basket cells assumed to correspond to
fast spiking cells. The neuron model was multicompartmental and
conductance-based, following the Hodgkin–Huxley and Rall formal-
isms. The pyramidal cells were adapting, regular spiking and had six
isopotential compartments (soma, basal dendritic, initial segment, and
three apical dendritic). Interneurons were fast spiking with three com-
partments (soma, dendritic, and initial segment). The potential E in a
compartment was calculated by integrating the currents:

dE

dt

�
�Eleak � E�gm � ��Ecomp � E�gcore � �Eext � E�gext � Ichannels � Isyn

cm
,

where cm is the capacitance of the membrane, gm is the membrane leak
conductance, and Eleak is the equilibrium potential of the leak current.
Further, gcore is the conductance between connected compartments,

Figure 1. Network setup and connectivity. A, A detailed connectivity of a single hypercolumn, containing 49 minicolumns. B, A sketch of the long-range connectivity within a cortical patch,
consisting of several hypercolumns (16 in a full patch). The numbers on the arrows specify the connectivity probabilities (see Materials and Methods) and postsynaptic potential size at resting
potential of the postsynaptic cell.
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which is dependent on compartmental cross section (equal for basal and
apical dendrites, smaller for initial segment). gext is a nonspecific excit-
atory conductance with reversal potential Eext, affecting the resting po-
tential. Ichannels is the active currents from the different ionic channels in
the membrane of the compartment, including voltage-dependent Na �,
K �, and Ca 2� channels as well as Ca 2�-dependent K � channels. Isyn is
the current through glutamatergic and GABA-ergic synapses on the
compartment. To avoid that all neurons have identical activation prop-
erties, which might contribute to potential spurious synchronization
artifacts, we introduced moderate variability to some parameters (con-
ductance of Na � and K � channels were normally distributed with 2%
SD, Ca 2� conductance of Ca 2�-dependent K � channels, and compart-
ment size were normally distributed with 10% SD). Pyramidal cells were
strongly adapting due to the Ca 2�-dependent K � channels. The decay
time constant for the Ca 2� was 1 s.

Pyramidal-to-pyramidal connections had both AMPA and voltage-
dependent NMDA components, pyramidal to basket cell connections
were purely AMPA-mediated whereas the inhibitory cells formed
GABAA-type synapses. The inhibitory basket cells connected to the soma
whereas pyramidal cells targeted the second dendritic compartment.
Time constants for the different synapses were �AMPA � 6 ms, �GABA � 6
ms and �NMDA � 150 ms. All pyramidal-to-pyramidal connections were
depressing. Depression was multiplicative (Tsodyks et al., 1998), de-
creasing the synaptic conductance of the synapse by 25% with each in-
coming spike and decaying back to the initial conductance with the time
constant of 700 ms.

Each pyramidal and basket cell received an independent noisy excit-
atory input through a low-conductance AMPA synapse activated by a
simulated Poisson spike train with an average firing rate of 300 s �1 (here
called excitatory noise input). This source alone made the pyramidal cells
spike at the rate of �1 s �1. For complete cell parameters, synapse and
model equations see Silverstein and Lansner (2011), where the same
neuron as well as synapse models were used. For connectivity, cell num-
bers and noise input settings, however, please refer to this paper.

Bistability. The network operated in a bistable regime (Amit and
Brunel, 1997; Lundqvist et al., 2010) with two distinct activity states
corresponding to attractors in the system. The default ground-state at-
tractor exhibited characteristics of a fixed-point attractor. The coding
attractors, on the other hand, had inherently finite life-times as a result of
cellular adaptation and synaptic depression (Lundqvist et al., 2006). In
consequence, firing rates in the coding state never reached a steady-state
fixed-point-they built up at the onset and, after reaching a peak value
they dropped off again. In this light, the term attractor is used in a loose
sense and is motivated by the model’s conceptual origin in and resem-
blance to a sparse and modular Hopfield network with a minicolumn in
the model being represented by one nonspiking abstract model unit.

The bistable regime is present for a specific balance between excitation
and inhibition (Amit and Brunel, 1997) but it does not require fine-
tuning in the presented network (Lundqvist et al., 2010). The noncoding
ground state was the default state of the network with all pyramidal cells
active at a very low rate (�0.1 s �1), i.e., lower than for isolated cells only
receiving excitatory noise input. This was a result of the feedback inhibi-
tion in the network. Following an external stimulation the network could
visit the coding state, where one of the distributed cell assemblies, con-
taining a single minicolumn in every hypercolumn, had significantly
increased firing rates. The remaining 48 minicolumns in each hypercol-
umn belonging to other assemblies had reduced rates instead. We tested
the upper limit of the bistability by progressively increasing excitatory
synaptic weights until the network started to spontaneously activate the
stored assemblies without any stimulation. The specific criterion ad-
opted to verify whether the network’s operating point did not exceed the
upper limit was the lack of any activations throughout three 20 s simu-
lations run with different random seeds, which implied that the ground
state retained stability. The lower limit, on the other hand, was defined as
the level of recurrent excitation below which even strong stimulation of
all minicolumns in a pattern failed to elicit an activation of that pattern
according to our criteria (see below, Detection rate). The bistability ratio,
a measure of how robust the bistable dynamics was to permutations of
the recurrent connectivity, was then defined as the upper limit of recur-

rent excitation divided by the lower limit. The weights set for the simu-
lated detection tasks implied that the network operated approximately
halfway between the upper and lower limit of the bistable range. The
presented results did not depend on the exact weight setting as long as the
network’s operating point was above the lower limit and not too close to
the upper limit to avoid its crossing when the excitatory noise input level
was increased.

Detection rate. To categorize a stimulus as detected (hit) or undetected
(miss) we examined the distribution of spikes generated in layer 2/3 cells.
The necessary condition for a hit was the activation of all the minicol-
umns in the partially stimulated cell assembly. The activation criterion
for each minicolumn was the generation of at least 40% of all spikes from
pyramidal cells in the respective hypercolumn within any sliding window
of 150 –200 ms in the period up to 500 ms after stimulation. The criterion
was defined to optimally balance specificity and sensitivity, and to pro-
vide reliable early detection. The detection rate was defined as the per-
centage of successfully identified, i.e., detected, stimulations averaged
over a set of 5 simulations. In each 100 s simulation 50 stimulations were
applied at an average rate of 0.5 s �1. To avoid the effect of entrainment of
slower oscillations due to previous stimulations, a random temporal jit-
ter drawn from zero-mean normal distribution with the SD of 0.3 ms was
added to interstimulus intervals. In addition, we verified that the alpha
phase at stimulation times was uniformly distributed. In the reminder of
the paper, we use the term trial to refer to a time interval spanning an
arbitrary period before and after a single stimulus. This way our simula-
tion can be conceptualized as a series of 50 trials.

Synthetic local field potentials and their spectral analysis. LFPs were
estimated by calculating the average soma potential for all cells in a local
population, i.e., one hypercolumn, similarly to the approach adopted by
Ursino and La Cara (2006). They were produced at the sampling fre-
quency of 1 kHz. Alpha oscillations were extracted from LFPs using a
bandpass finite-impulse response filter in the forward and reverse direc-
tions to avoid any phase distortions. Then peaks and troughs were iden-
tified by inspecting local signal gradients. An analytic representation of
the alpha rhythm was obtained by applying a Hilbert transform, which
allowed for estimating its instantaneous phase and amplitude envelope.

To quantify the consistency of alpha phases corresponding to hits,
�h(k)�(k � 1,.., Nh), and misses, �m(k)�(k � 1,.., Nm), a phase-locking
index (PLI) was used (Lachaux et al., 1999):

PLIhits/misses �
1

Nh/m
� �

k�1

Nh/m

exp�j�h/m�k�
� ��,

where Nh/m is the number of stimulations classified as detected or unde-
tected, respectively. In addition, a Rayleigh test for circular uniformity
was applied. A PLI measure was also applied to quantify instantaneous
phase consistency between hypercolumnar alpha oscillations.

The power spectra of LFP trials were obtained using the multitaper
method (Thomson, 1982) with a family of orthogonal tapers produced
by Slepian functions (Slepian and Pollak, 1961). For the broad alpha
frequency range (8 –14 Hz), the time window was set to fit 8 cycles (as a
result, it was in the range from 0.6 s for the taper centered at 14 Hz to 1.0 s
for the taper at 8 Hz) and the number of tapers amounted to 3. Overall,
the time-bandwidth product was kept at 2.

Results
We used a previously developed network model with a hyperco-
lumnar and minicolumnar structure, where competing cell
assemblies were stored by long-range connections across hyper-
columns (Fig. 1). Upon brief 30 ms stimulations these cell assem-
blies could produce a short-lived (�300 ms) response in terms of
elevated firing rates and gamma-like oscillations. Our focus was
on prestimulus conditions favorable to the activation of such
stimulated assemblies, associated here with successful detections
of weak external stimuli. Before the stimulation onset the system
was in its default ground state accompanied by alpha oscillations
generated by the reciprocal interaction between recurrently con-

Lundqvist, Herman et al. • Role of Alpha Oscillations in Stimulus Detection J. Neurosci., July 17, 2013 • 33(29):11817–11824 • 11819



nected pyramidal and basket cells, and manifested in the syn-
thetic LFP (see Materials and Methods). Spiking of pyramidal
cells receiving excitatory noise input activated the connected bas-
ket cells, which then in turn terminated the activity of the original
pyramidal cells via inhibitory feedback. This interaction repeated
in a cyclic fashion at the rate of �10 Hz. The rate was determined
to some degree by the decay time constant of inhibition. More
importantly however, it depended on how fast excitatory noise
input reactivated the pyramidal cells and how quickly pyramidal
cells activated the basket cells (Brunel and Wang, 2003).

Here we focused on functional consequences of the ongoing
oscillatory dynamics. We studied the effect of oscillatory phase,
power, and synchronization in the alpha band on the network’s
performance in detecting incoming stimuli. To this end we run
100-s-long simulations, each with 50 weak and brief external
stimuli at the mean rate of 0.5 Hz.

Alpha phase at stimulus onset modulates detection rate
We closely examined the alpha rhythm dynamics in our network
at the stimulus onset. We observed that the distribution of alpha
phases corresponding to detected stimuli was concentrated near
the trough of the alpha cycle (PLIhits � 0.19; Rayleigh test, p �
0.048) whereas the alpha phases of undetected stimuli were
distributed more broadly (PLImisses � 0.10; p � 0.216, null hy-
pothesis about uniformity could not be rejected) with the mean
phase close to the peak of the alpha cycle (Fig. 2A). To obtain
mechanistic insights into the observed phase modulation we dis-
mantled the network by removing long-range excitatory recur-
rent connections, crucial for the attractor dynamics, and studied
individual disconnected hypercolumns. A weak input in the form
of a single synaptic event leading to a 1.5 mV EPSP was applied to

all layer 2/3 pyramidal cells within one arbitrary minicolumn in
each hypercolumn at different alpha phases, closely following a
uniform distribution. Having inspected the spiking pattern in the
alpha period subsequently to this stimulation, we observed that
the number of spikes within an interval of one alpha cycle was
strongly modulated by the phase of stimulation, as quantified by
the linear-circular correlation coefficient of 0.95 (p � 0.004; Fig.
2B). We concluded that the long-range connections, although
underlying the nonlinear attractor dynamics and critical for co-
ordinated assembly activations, were not the key factor account-
ing for the observed phase effects. The main determinants were
instead related to the nature of the ongoing alpha oscillations
with windows of firing followed by windows of inhibition where
the majority of cells were far below firing threshold. Because the
time scale of the oscillation (�100 ms) was much longer than the
duration of the EPSPs (�10 ms for he AMPA transmitted signal
dominating the amplitude of the EPSP), presynaptic spiking
events occurring around the inhibitory phase, i.e., the cycle
trough, had limited impact on postsynaptic spiking activity.

Dichotomous effect of alpha power on detection rate
We found three simple mechanisms for modulating the power of
alpha oscillations in the network: (1) by increased excitatory
noise input to basket cells, or (2) to pyramidal cells, or (3) by
synchronization of the oscillators across the network. In this sec-
tion we deal with the first two. As a result of increasing the excit-
atory noise input to basket cells and making them more excitable,
they fired in larger numbers in each oscillatory cycle, hence deep-
ening the trough of the alpha cycle (Fig. 3A) due to the stronger
synchronized inhibitory effect on the pyramidal cells. Analo-
gously, strengthening the background excitation to the pyrami-
dal population increased the number of pyramidal cells firing in
each cycle, which deepened the wave trough as, again, more bas-
ket cells were recruited (Fig. 3B). These two ways of modulating
alpha-band power had opposite effects on the observed detection
rate: stronger diffuse excitation on the pyramidal population in-
creased detection rate, whereas the opposite was observed when
basket cells received elevated excitation (Fig. 3C,D). To investi-
gate the mechanisms underlying these detection rate modula-
tions we dismantled the network again and examined isolated
hypercolumns. We then provided single 1.5 mV EPSPs to a single
population, i.e., minicolumn, and studied its response at differ-
ent levels of alpha power, generated by varying noise excitation
onto pyramidal cells. However, we did not note any significant
differences (repeated-measures ANOVA over 10 simulations;
Fig. 4 illustrates the mean and SD of the number of generated
spikes for three excitation levels) and concluded therefore that
the reported detection rate modulations by alpha power could
not be explained by response properties of individual minicol-
umns. Instead, they were found to depend on the nonlinear at-
tractor dynamics. We observed that increasing the excitatory
noise on basket cells stabilized the default ground state, whereas
the opposite effect was obtained when the stronger noise input
was applied to pyramidal cells (Fig. 3C,D). In other words, the
network’s operating point was shifted either further away or
closer to the limit where individual cell assemblies would activate
spontaneously, thus decreasing or increasing, respectively, the
chance for a weak stimulation to activate the corresponding cell
assembly.

Because stimulus detection is likely to involve the coactivation
of multiple areas in vivo, we next tested whether similar behavior
would occur in a hierarchy of two identical, connected cortical
patches (see Materials and Methods, Network model). The

Figure 2. Modulatory effect of prestimulus alpha phase. A, Circular distribution (count pre-
sented as percentage; phase in degrees) of the alpha-rhythm phase at the time of stimulation
for hits (left) with PLIhits � 0.19 (null hypothesis about uniform phase distribution was rejected
in Rayleigh test, p � 0.048) and misses (right) with PLIhits � 0.10 (null hypothesis could not be
rejected, p � 0.216). B, Spiking response to stimulation at different alpha phases, a relative
change in the number of spikes elicited within the poststimulus interval of one alpha cycle with
respect to the average number over all alpha phase bins (12 bins of the size of 30 degrees).
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lower-level “sensory” patch was activated by weak stimuli and
had feedforward connections onto the higher-level “associative”
patch. Detection was then tested in the associative patch during
simultaneous excitatory noise manipulations to both patches.
The same type of dichotomous behavior of alpha power and de-
tection rate depending on the underlying mechanism of alpha-
band power modulation was observed (Fig. 3E,F).

Reset signal synchronizes the network and provides a
temporal mask for detection
The third mechanism modulating the alpha-band power in the
ground state was synchronization of individual hypercolumns,
acting as weakly coupled alpha oscillators. Increased phase syn-
chronization implied enhanced amplitude of the alpha rhythm in
the LFP averaged over the entire patch. Spontaneous fluctuations
in alpha power occurred over the course of a single simulation
and strongly correlated with the phase consistency (quantified
with instantaneous PLI as discussed in Materials and Methods)
among hypercolumnar alpha oscillators (Fig. 5A; Pearson’s r �
0.83, p � 0.001). We investigated whether these spontaneous
power fluctuations affected the detection rate by dividing trials
into quartiles based on the prestimulus alpha-band power (200
ms time window ending at the stimulus onset) and calculating hit

Figure 4. Response properties of single minicolumns as a function of excitatory noise input
to pyramidal cells. There is no statistical difference (null hypothesis cannot be rejected in a
repeated-measures ANOVA test) between the average number of spikes generated in a single
minicolumn at different levels of noise excitation (90, 100, and 110% of the nominal level) onto
pyramidal cells. The mean number of spikes over 250 trials (stimulations) is depicted along with
its SD.

Figure 3. Detection rate modulation by alpha power. Alpha power could be enhanced by increased excitatory noise input on either basket cells (A) or pyramidal cells (B). In both cases, the alpha
troughs are deepened by recruitment of more basket cells. The modulation of both troughs and peaks is shown as the relative percentage change with respect to the values corresponding to the
lowest level of noise excitation. C, Enhancing alpha power by increasing excitatory noise on basket cells stabilizes the ground state (shown in red), as reflected by the rising bistability ratio (see
Materials and Methods), and decreases detection rates (black). D, Enhancing alpha power by increasing excitatory noise on pyramidal cells destabilizes the ground state (red) and enhances detection
rates (black). All error bars correspond to SDs of the means obtained in 250 trials. The same trends for hit rate modulation by the level of noise excitation on basket cells (E) and pyramidal cells (F )
were obtained in a two-patch network (see Materials and Methods).
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rates in each quartile (Fig. 5B). As a result, we did not find any
significant modulatory effect (repeated-measures ANOVA over 5
simulations, overall 250 trials). We hypothesized that this was
related to the alpha-phase dependence of detection rates men-
tioned earlier and that synchronization could modulate this ef-
fect without altering the average detection rate. This line of
reasoning led us to another experiment, where weak external
signals in the form of single 2.5 mV EPSPs were synchronously
(within a 5 ms window) delivered to all pyramidal cells in the
network at �5 s intervals. This resulted in a transiently enhanced
alignment of the phases of the hypercolumnar alpha generators,
since the cells were simultaneously forced toward the preferred
spiking phase of the ongoing oscillations, which in turn led to
alpha-band power bursts in the spatially averaged LFP. The effect
of the phase reset was particularly apparent when a trial average
was compared with a single-trial signal (Fig. 5C). Next, we stim-
ulated single attractor cell assemblies following this reset at vary-
ing latencies ranging from 50 to 250 ms, probing the following

alpha cycles. In line with our results on spontaneous fluctuations
of the alpha-band phase synchronization, the overall detection
rate averaged over different latencies was comparable to the per-
formance level obtained with no reset (Fig. 5D, gray and red lines,
respectively). However, we observed a strong modulatory effect
of the stimulus latency on the detection rate, which corresponded
to the alpha time scale. In particular, the network exhibited en-
hanced sensitivity to the stimuli applied around the time of
postentrainment alpha peaks so that the increased detection per-
formance was observed for two short windows of opportunity
within the first 200 ms following the global reset: 80 –100 ms and
160 –180 ms, and suppressed detection rate was reported for the
other latencies (Fig. 5D).

Discussion
We used a bistable attractor model to investigate the effect of
prestimulus alpha oscillations on the stimulus detection perfor-
mance. The alpha oscillations were generated in the default at-
tractor state of the network characterized by low-rate diffuse
activity and associated with the network’s readiness to process
incoming stimuli (Djurfeldt et al., 2008; Lundqvist et al., 2010).
Following a selective stimulus the network could transiently visit
the coding state, manifested as elevated spiking activity of the
stimulated cell assembly at the expense of other assemblies em-
bedded in the network. During the activation period, lasting
�300 ms, the network instead produced gamma oscillations
(Lundqvist et al., 2011, 2012). This is in line with the view that
alpha controls access to the knowledge system and that alpha is
attenuated for 200 –500 ms after a stimulus which requires re-
trieval of memory content (Klimesch, 2012). Such assembly acti-
vations were viewed as hits in a simulated stimulus detection
paradigm and we found that both phase and power of the ongo-
ing alpha oscillations modulated the network’s performance. An
increase in prestimulus alpha-band power could either enhance
or suppress the detection probability depending on the mecha-
nism underlying the power modulation. Additionally, we ob-
served that phase synchronization following an external reset
signal could transiently boost the aforementioned phase effects.

Model simplifications
In an attempt to unify a large body of experimental findings we
used a simplified network model. Here we discuss the extent and
implications of our simplifications. Most importantly, the model
only accounts for layers 2/3 in a single cortical patch. We concen-
trated on layer 2/3 when simulating stimulus detection for several
reasons. First, stimulus-evoked firing has been reported to be
sparser and carry more information about stimuli in the superfi-
cial layers (Sakata and Harris, 2009). Second, these layers appear
as the main drivers of stimulus-evoked activity (Binzegger et al.,
2009; Weiler et al., 2008). Thirdly, superficial recordings have
revealed discrete, stimulus-evoked dynamics already in the early
stages of cortical processing (Kenet et al., 2003; Bathellier et al.,
2012), which also motivated us to use an attractor network. Fi-
nally, stimulus driven transitions from alpha to gamma oscilla-
tions, observed in our network and believed to reflect active
cortical processing, are specific to layers 2/3 (Fries et al., 2008;
Buffalo et al., 2011). In early sensory areas, the deep layers exhibit
oscillations in the alpha frequency range even after such transi-
tions. This deep alpha-band activity likely reflects pulsed inhibi-
tion involving the thalamo-cortical loop (Lorincz et al., 2009).
Although we did not include this loop in the model, alpha oscil-
lations have been reported to be coherent within a cortical col-
umn, i.e., between the superficial and deep layers (Bollimunta et

Figure 5. Transient alpha phase alignment as a temporal mask for stimulus detectability. A,
Alpha amplitude spontaneously fluctuates over the course of a trial (here 3 s interval is shown in
the top) and is highly correlated (Pearson’s r � 0.83, p � 0.001) with instantaneous interhy-
percolumn phase consistency (quantified using PLI and shown in the bottom). B, There is no
statistical evidence for a modulatory effect of the spontaneous alpha-band power fluctuations
on the hit rate. Null hypothesis about the equality of mean hit rates (shown with SDs, 250 trials)
corresponding to different prestimulus alpha power quartiles cannot be rejected (repeated-
measures ANOVA). C, A nonspecific stimulus applied to all pyramidal cells in the network at t �
0 resets and temporally aligns the phases of the ground-state oscillations in the network,
resulting in a temporary enhancement of alpha amplitude seen in a single LFP trial (top) and
reset-triggered LFP average over 250 trials (bottom). D, When a target stimulus is applied with
a certain delay following the reset signal at t � 0, a strong detection rate modulation by this
latency is observed (bars). The performance peaks correspond to the postreset alpha peaks. The
average rate (gray line) is comparable with the mean rate in the control case without any reset
signals (red line). The shaded areas illustrate the SDs of the corresponding average hit rates
obtained over a set of five simulations, each consisting of 50 trials.

11822 • J. Neurosci., July 17, 2013 • 33(29):11817–11824 Lundqvist, Herman et al. • Role of Alpha Oscillations in Stimulus Detection



al., 2008). Adding the deep layers should therefore have similar
dynamical impact as increasing the drive on the interneurons in
our network causing an increase in pulsed inhibition.

Here, we focused on stimulus detection in a single cortical
patch. Because detection processes in vivo are likely to involve
global activation of multiple cortical areas, we also demonstrated
that our results translated to the case where two connected cor-
tical patches were used without any loss of generality. In conse-
quence, it can be expected that more elaborate networks of
networks should display similar dynamics as long as each subnet-
work is similar to the one presented here.

Alpha power modulations
Experimentally, prestimulus alpha power displays both positive
(Linkenkaer-Hansen et al., 2004; Zhang et al., 2008) and negative
(Hanslmayr et al., 2007; Romei et al., 2008) correlations with
psychophysical performance. The combined use of LFP and mul-
tiunit recordings in monkeys has provided a possible explanation
for these seemingly conflicting results (Bollimunta et al., 2008,
2011; Mo et al., 2011) with the cortical and laminar origin of
alpha generation playing a central role. When the alpha was
mainly produced in the deeper layers, as in low-level sensory
cortices, alpha power had an inhibitory effect (Bollimunta et al.,
2008, 2011). In the inferior temporal cortex, however, alpha was
generated in the superficial layers and positively correlated with
increased excitability (Bollimunta et al., 2008; Mo et al., 2011).

In our network, alpha oscillations were generated by rhythmic
inhibition from the interneuron cell population, as arguably oc-
curs in vivo (Klimesch et al., 2007; Jensen and Mazaheri, 2010;
Haegens et al., 2011). By increasing tonic diffuse excitation on the
inhibitory or excitatory populations, we obtained, respectively,
negative or positive correlation between detection rate and the
alpha-band power. Both these manipulations increased alpha
power but had opposite effects on the stability of the ground-state
attractor. Higher excitatory noise on the basket cells rendered the
ground-state dynamics more stable (Amit and Brunel, 1997),
thus making it more difficult to activate the cell assemblies. When
the diffuse excitation on the pyramidal cells was upregulated, a
less stable ground state facilitated the activation of a stimulated
assembly. Alpha power was then positively correlated with pyra-
midal firing rates, consistently with the alpha generated in the
inferior temporal cortex (Mo et al., 2011). In the case of a sup-
pressive effect of alpha power on detection rate, we observed on
the other hand that alpha power was negatively correlated with
pyramidal firing rates, in accordance with recent experimental
findings (Haegens et al., 2011). Attentional modulation could
produce both phenomena by long-range excitatory connections
generally targeting either pyramidal or inhibitory interneuron
cells. The model predicts the presence of a population of fast
spiking interneurons, which are phase-locked to ongoing alpha
oscillations and phase-shifted relative to adjacent pyramidal cells.
Furthermore, these cells should exhibit increased firing rates dur-
ing periods of enhanced alpha power, regardless of whether the
effect is inhibitory or excitatory. A reduction in alpha-band
power as a result of active processing should however always be
correlated with an increase in firing rates in a specific subset of
pyramidal cells.

To the best of our knowledge, the modulatory effect of pre-
stimulus alpha power on detection rates has not been previously
modeled. However, in a related computational study by Jones et
al. (2009), modulations of stimulus event-related potentials by
alpha-band power were simulated. In addition, Rajagovindan
and Ding (2011) obtained an effect of inverted U-shape depen-

dence of evoked responses on prestimulus alpha power in their
theoretical model, in line with some experimental evidence
(Linkenkaer-Hansen et al., 2004; Zhang and Ding, 2010). Their
model was constructed based on the assumption that alpha-band
power modulates gain in a cortical network. We did not observe
an inverted U-shape effect in our study but it could potentially be
obtained by a combination of the inhibitory and excitatory effects
described above.

Alpha phase as a temporal mask
On the micro-scale, the alpha cycle reflects periods of high and
low excitability (Schroeder and Lakatos, 2009; Haegens et al.,
2011). In our network, the means of the broadly distributed alpha
phases corresponding to the time of stimulation differed by al-
most half a cycle between hits and misses, consistent with exper-
imental results on the effect of alpha phase on stimulus detection
probability (Busch et al., 2009; Mathewson et al., 2009; Busch and
VanRullen, 2010).

The phase modulations observed in experimental data have
fuelled discussions about functional implications of the alpha
rhythm, which is hypothesized to provide timed (Klimesch et al.,
2007) or pulsed inhibition (Haegens et al., 2011; Mathewson et
al., 2011). Combined with the early finding that internal oscilla-
tions can become entrained to external stimuli (Adrian and Mat-
thews, 1934), it has inspired the hypothesis that the brain can
build up “attention energy” to rhythmic stimuli (Large and Jones,
1999). This idea has gained support from studies providing a
regular chain of entraining stimuli followed by target stimuli at
different time lags, presumably arriving at different phases of the
entrained rhythm. The latency of the target stimuli had indeed a
strong effect on the probability of its detection (Jones et al., 2002;
Mathewson et al., 2010), as reflected in the enhanced hit rate for
lags of �80 ms and suppressed for others. In our simulations, a
reset signal caused the enhancement of alpha power due to global
synchronization of the weakly coupled oscillators. This amplified
the effect of the preferred alpha phase for hits demonstrated for
the no-reset condition. The rate of detection of target stimuli
applied 80 –90 ms after the reset significantly increased, whereas
for the other latencies around this peak it was suppressed below
the no-reset control case. In consequence, we view such a reset
signal as a powerful attentional gating mechanism that tran-
siently applies a temporal mask. Such mask would be useful when
the timing of relevant incoming stimuli is known, as during active
sensory exploration, e.g., voluntary saccades. Interestingly, sac-
cades have been shown to be phase-locked to alpha-like oscilla-
tions during free viewing (Ito et al., 2013). This part of our study
also relates to a recent visual detection experiment in humans
where a task irrelevant flash stimulus was followed by a rhythmic
fluctuation in performance, likely due to entrainment of an 8 Hz
rhythm (Landau and Fries, 2012). In our simulations, we also
observed several peaks in the detection rate following the reset
signal, closely matching the entrained rhythm.
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